Constructibilité à la règle et au compas et extensions de corps

Lycée Pierre de Fermat, MPSI1 219

Exposé présenté le 15 juin 2012

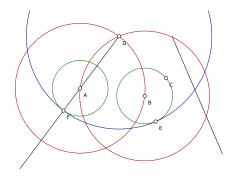
Plan

- 1 Constructions à la règle et au compas
- 2 Un peu d'algèbre sur les nombres constructibles
- 3 Généralités sur les extensions de corps
- 4 Théorème de Wantzel, applications

Présentation du problème

- Construire des figures géométriques avec 2 outils : règle non graduée et compas
- On peut tracer des droites, des cercles, et...c'est tout
- Problème qui vient de l'antiquité grecque

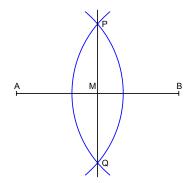
Rapporter des longueurs avec un compas...

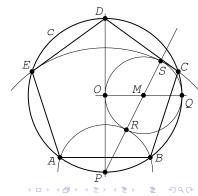


Que l'on autorise le compas à reporter des longueurs ou non, ça revient au même. La longueur [BC] ci-contre a été reportée en A...

Ce qu'on sait faire depuis longtemps

- Tracer une parallèle/perpendiculaire à une droite passant par un point, construire un triangle équilatéral, tracer une bissectrice . . .
- Exemple : médiatrice (simple) et pentagone (moins simple)

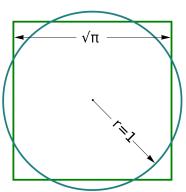




Des problèmes plus difficiles, voire insolubles

- Construction de l'heptadécagone : découverte en 1796 par Gauss
- Les 3 grands problèmes de l'Antiquité

- Duplication du cube
- Quadrature du cercle
- Trisection de l'angle



Des problèmes plus difficiles, voire insolubles

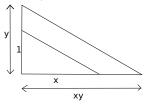
- En fait, ces 3 constructions sont impossibles à la règle et au compas!
- Preuve : 1837, théorème de Wantzel
- Comment ça marche? Avec de l'algèbre!

Nombres constructibles

- On munit le plan d'un ROND
- On s'intéresse aux points constructibles à partir de (0,0) et (1,0)
- Nombres constructibles
 - déf : coordonnées de points constructibles
 - x constructible $\Leftrightarrow |x|$ longueur d'un segment constructible

Opérations sur les longueurs par construction géométrique

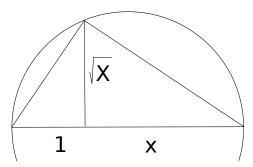
- On a 2 segments de longueur x et y
- On peut construire des segments de longueur :
 - x + y, |x y|: évident
 - $x \times y$: cf ci-dessous
 - x/y: je vous laisse chercher...



• Les nombres constructibles forment un corps!

Une histoire de racine carrée...

• On peut prendre des racines carrées :



Une histoire de racine carrée...

- Idée : on ne peut pas « faire mieux » que les opérations précédentes
 - Droite : équation de degré 1
 - Cercle : équation de degré 2
- Racine carrée : OK ; racine cubique : pas OK
- Comment formaliser ça? Avec les extensions de corps.

Extensions de corps : définitions

- L corps, K ⊂ L sous-corps : L extension du corps K
- On s'intéresse aux propriétés de L relativement à K
- Notation : L/K pour désigner l'extension

Éléments algébriques de L sur K

- $\alpha \in L$
- déf : α algébrique sur $K \Leftrightarrow \exists P \in K[X] \setminus \{0\} \mid P(\alpha) = 0$
 - algébrique ≠ transcendant
- Polynôme minimal : engendre l'idéal des polynômes annulateurs
 - $\Pi_{\alpha}(\alpha) = 0$, Π_{α} irréductible

Extension de K par un élément

- Soit $\alpha \in L$, on note $K(\alpha)$ le plus petit sous-corps contenant K et α
- $K(\alpha) = \{R(\alpha) \mid R \in K(X)\}$
- α transcendant : $K(\alpha) \simeq K(X)$
- α algébrique : $K(\alpha) = K[\alpha]$, $\dim_K K(\alpha) = \deg \Pi_{\alpha}$

Extensions finies, degré

- déf : L/K extension finie $\Leftrightarrow L$ est un K-ev de dim finie
- degré de L/K : $[L:K] := \dim_K L$
- Multiplicativité du degré : pour $K \subset L \subset M$,
 - M/K finie $\Leftrightarrow L/K$ finie et M/L finie
 - [M:K] = [M:L][L:K]
- Remarque : α algébrique $\Leftrightarrow K(\alpha)/K$ finie et $[K(\alpha) : K] =$ degré de α .

Construction d'un point, extension quadratique

- On part de points dans K^2 où $\mathbf{Q} \subset K \subset \mathbf{R}$
- Pour obtenir un nouveau point, il faut qu'il soit l'intersection
 - (a) de deux droites
 - (b) d'une droite et d'un cercle
 - (c) de deux cercles
- Cas (a) : système linéaire, le nouveau point est dans K^2
- Cas (c) : se réduit au cas 2 en écrivant les équations

Construction d'un point, extension quadratique

 On se penche donc sur l'intersection d'un cercle et d'une droite : ∃a, b, c, d, e, f ∈ K tels que

$$ax + by + c = 0 \tag{1}$$

$$x^2 + y^2 + dx + ey + f = 0 (2)$$

• exprimer y en fct de x avec (2) puis substituer dans (1)...

$$\alpha x^2 + \beta x + \gamma = 0, \quad \alpha, \beta, \gamma \in K$$

• et $\alpha \neq 0$: trinôme du 2nd degré

Construction d'un point, extension quadratique

•
$$P(X) = \alpha X^2 + \beta X + \gamma$$
; $P(x) = 0$

- si $x \notin K$, P irréductible $\Rightarrow P = \Pi_x$
- $[K(x):K] = \deg P = 2$: extension quadratique

Construction d'une figure, tour d'extensions quadratiques

- On considère x constructible, et x_1, \ldots, x_n coordonnées des points intermédiaires de la construction
- On a $\mathbf{Q} = K_0 \subset K_0(x_1) = K_1 \subset \ldots \subset K_{n-1}(x_n) = K_n$
- $\forall i, [K_{i+1} : K_i] = 1 \text{ ou } 2$
- On extrait (L_j) tels que $L_0 \subsetneq L_0(x_1') = L_1 \subsetneq \ldots \subsetneq L_{k-1}(x_k') = L_k$
- $\forall j, [L_{j+1}: L_j] = 2:$ tour d'extensions quadratiques

Théorème de Wantzel

- Énoncé : un nombre est constructible ssi il appartient à un corps L tel que L/Q soit décomposable en tour d'extensions quadratiques
- pour montrer le sens réciproque, utiliser "x constructible $\Rightarrow \sqrt{x}$ constructible"
- Corollaire : un nombre constructible est algébrique et son degré est une puissance de deux

Retour sur les 3 grands problèmes de l'Antiquité

- La duplication du cube
 - Dupliquer le cube de côté $1 \Rightarrow$ construire le nombre $\sqrt[3]{2}$
 - Or $X^3 2$ annulateur irréductible donc minimal
 - $[\mathbf{Q}(\sqrt[3]{2}) : \mathbf{Q}] = 3$ qui n'est pas une puissance de 2
 - La duplication du cube à la règle et au compas est impossible

Retour sur les 3 grands problèmes de l'Antiquité

- La trisection de l'angle
 - On sait construire un angle de $\frac{\pi}{3}$ (triangle équilatéral)
 - Si on pouvait trisecter, $\cos\left(\frac{\pi}{9}\right)$ serait constructible
 - Or le polynôme minimal est $8X^3 6X 1!$
 - Même argument que tout à l'heure...

Retour sur les 3 grands problèmes de l'Antiquité

- La quadrature du cercle
 - A partir du cercle de rayon 1, construire $\sqrt{\pi}$
 - Or π transcendant $\Rightarrow \sqrt{\pi}$ transcendant
 - Tout nombre constructible est algébrique. . .