
(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
HANDOUT FOR LECTURE 10

DECEMBER 21, 2023 — L. T. D. NGUYỄN

Context: there was a campus blockade at ÉNS Lyon on December 21, in protest against an
immigration bill inspired by far-right ideology.1 This lecture could not be given in person,
so here is a write-up of the material that was supposed to be covered – in particular, the first
section on monads is necessary to do Exercise 1 of the homework.

MONADS (CONTINUED)
Last time, we defined monads from adjunctions: an adjunction L a R between

L : C → D and R : D → C induces the monad (M,µ, η) on C where:
• M = R ◦ L is an endofunctor of C
• µ = R(εL) : M ◦M ⇒ M where ε is the counit of the adjunction

(indeed, ε : L ◦R ⇒ IdD therefore R(εL) : R ◦ L ◦R ◦ L ⇒ R ◦ IdD ◦ L)
• η : IdC ⇒ M is the unit of the adjunction

We also saw examples such as the list monad induced by the adjunction (−)∗ a U
(“free/forgetful adjunction”) between the category Set of sets and the category
Mon of monoids, as well as the covariant powerset monad and the state monad.

These monads are all on Set. A monad on Set admits a bind (>>=) operation
x >>= f = µB(M(f)(x)) ∈ M(B) for x ∈ M(A) and f : A → M(B)

supporting the computer science point of view onmonads as representing compu-
tational effects. For instance for the list monad, we had:

List(A) = A∗ (lists over A)
List(f)([a1, . . . , an]) = [f(a1), . . . , f(an)] (“map”)

ηA(a) = [a]

µA([ℓ1, . . . , ℓn]) = ℓ1 · . . . · ℓn (“flatten”)
therefore [1, 2] >>=(x 7→ [0, 3x]) = [0, 3, 0, 6].

(Newmaterial starts here.) Given two functions f : A → M(B) and g : B → M(C),
there is now an obvious way to “plug them together”: define

f >=> g = (x 7→ f(x) >>= g)

For example, (y 7→ [1 + y, 2]) >=>(x 7→ [0, 3x]) = (y 7→ [0, 3 + 3y, 0, 6]). Intuitively,
this is a kind of “composition of functions with effects” – here, the effect is a sort
of non-determinism.2 This new operator generalizes to arbitrary categories:

Definition. Let C be a category, f ∈ C(A,M(B)) and g ∈ C(B,M(C)). Let (M,µ, η)
be a monad on C. We define the Kleisli composition of g and f as

g <=< f = µC ◦M(g) ◦ f

1For more explanations in English, see this article: https://www.theguardian.com/world/2023/
dec/20/france-immigration-bill-passed-controversy-emmanuel-macron-marine-le-pen

2Recall that when doingmath, it is preferrable to use the powerset monad tomodel nondeterminism
(this will be done in the coalgebra course) but when writing actual programs, the list monad may be
more convenient way to keep track of a non-deterministic superposition of possibilities.

1

https://www.theguardian.com/world/2023/dec/20/france-immigration-bill-passed-controversy-emmanuel-macron-marine-le-pen
https://www.theguardian.com/world/2023/dec/20/france-immigration-bill-passed-controversy-emmanuel-macron-marine-le-pen


2 DECEMBER 21, 2023 — L. T. D. NGUYỄN

Proposition. When C = Set, this general definition of Kleisli composition agrees with
the set-specific one (using >>=): g <=< f = f >=> g.

Proof idea. Just unfold the definitions. □

Since we have a composition operation, we’d like to use to build a category. But
to do so, we’d need to check that, for example, Kleisli composition is associative,
that is, (h <=< g) <=< f = h <=<(g <=< f). The conditions that make this work are
summed up in the following definition.

Definition. An internal monoid in [C, C] is a 3-tuple (M,µ, η) where:
• M is an endofunctor of C
• µ : M ◦M ⇒ M and η : IdC ⇒ M are natural transformations
• µ satisfies the associativity law: the diagram below commutes

M ◦M ◦M M ◦M

M ◦M M

M(µ)

µ

µM

µ

• µ and η satisfy the unit laws: the diagram below commutes

M M ◦M M

M

M(η)

µ

ηM

idM idM

(this is equivalent to asking the left triangle and the right triangle to com-
mute separately – each triangle corresponds to one of the two unit laws).

Remark. Recall that the notation [C, C] stands for the category of functors from C to
C (with natural transformations as morphisms). Let us justify the name “internal
monoid” by analogy. By formally replacing ([C, C], ◦, IdC) with (Set,×, {∗}), we
may define an internal monoid in Set as a set M with µ : M × M → M (so µ is a
binary operation on M) and ê : {∗} → M , where the “associativity law” becomes

M ×M ×M M ×M

M ×M M

µ×idM

idM×µ µ

µ

stating that µ is associative, while the unit laws become the fact that ê(∗) is a unit
for µ. So an internal monoid in Set is a monoid in the usual sense!

This analogy will be made technically rigorous in Olivier Laurent’s part of the
course using the notion of internal monoid in a monoidal category.

Proposition. Every monad on C is an internal monoid in [C, C].

Proof idea. The associativity and unit laws are consequences of the triangle identities
relating the unit and the counit of the adjunction that induces our monad. □

Theorem. Given an internal monoid (M,µ, η) in [C, C], the following data indeed defines
a category, called the Kleisli category CM ofM :

• the objects of CM are the same as of C
• CM (A,B) = C(A,M(B)) for any two objects A and B
• composition is the Kleisli composition <=<
• the identity for A in CM (A,A) = C(A,M(A)) is ηA



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HANDOUT FOR LECTURE 10 3

Proof idea. The associativity law on µ is used to show that <=< is associative, while
f <=< ηA = ηB <=< f = f for f ∈ CM (A,B) = C(A,M(B)) thanks to the unit laws
concerning µ and η. □

If we see a morphism f ∈ CM (A,B) = C(A,M(B)) as an “effectful morphism”
for the effect represented by themonadM – as in our previous examples over Set –
thismeanswe have a general well-behaved notion of “effectful composition”. Now,
let us see another remarkable property of Kleisli categories.

Theorem. Let (M,µ, η) be an internal monoid in [C, C]. Then we have an adjunction
L a R inducing the monad (M,µ, η), where

L : C → CM R : CM → C
A 7→ A A 7→ M(A)

f ∈ C(A,B) 7→ ηB ◦ f h ∈ CM (A,B) 7→ µB ◦M(f)

Proof idea. Some tedious verifications using the associativity and unit laws show
that L and R are indeed functors. For the adjunction, note that

CM (L(A), B) = C(A,M(B)) = C(A,R(B))

and, for f ∈ C(A′, A) and g ∈ CM (B,B′), we have

CM (L(f), g) = (h ∈ C(A,M(B)) 7→ g <=<h ◦ f) = C(f,R(g))

so we have an equality of functors (i.e. equality on both objects and morphisms)

CM (L(−),−) = C(−, R(−))

and two equal functors are naturally isomorphic. For the unit of the adjunction, it’s
the image of the identity for L(A) in CM via the isomorphism… but this identity in
CM is ηA and the isomorphism sends it to itself.

Finally, the counit is εA = idM(A) ∈ C(R(A), R(A)) = CM (L(R(A)), A), so
R(εL(A)) = R(εA) = µA ◦M(idM(A)) = µA: the induced monad is (M,µ, η). □

What does this mean? We saw previously that every monad on C is an internal
monoid in [C, C], but the above theorem tells us that the converse is also true. Hence
a monad on C is the same thing as an internal monoid in [C, C]. In fact, monads
are often defined as such internal monoids.3

This is useful to check that a monad is a monad without having to guess an
adjunction: it suffices to verify that µ and η satisfy the associativity and unit laws.
For instance, wemay turn the “option data type” into a monad by defining directly
µ and η as follows:

µA : Option(Option(A)) → Option(A) ηA : A → Option(A)

Some(Some(a)) 7→ Some(a) a 7→ Some(a)

Some(None) 7→ None

None 7→ None

The option monad models the computational effect of partiality, in other words, of
the possibility of failure. The Kleisli category SetOption is indeed equivalent (and
even isomorphic) to the category PSet of partial functions (cf. Homework 3).

Remark. The Kleisli category of the powerset monad is isomorphic to Rel.

3Now you can understand this joke: https://stackoverflow.com/questions/3870088/
a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem

https://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
https://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem


4 DECEMBER 21, 2023 — L. T. D. NGUYỄN

PRESERVATION OF (CO)PRODUCTS
A key notion of this course has been that of adjoint functor:

• they correspond to global solutions to problems specified by universal
properties, which are central to the categorical point of view;

• they induce monads, which are useful for computer science.
As we will see now, another advantage of adjoint functors is that they “interact
nicely” with (co)products. This is also the case of representable functors.

Definition. A functor F : C → D preserves products if, whenever (B, (πi)i∈I) is a
product of (Ai)i∈I in C, then (F (B), (F (πi))i∈I) is a product of (F (Ai))i∈I .

Let’s start with an intuitive proposition (the proof is left as an exercise).

Proposition. Suppose that we have a product (B, (πi)i∈I) of a family of objects (Ai)i∈I ,
and an isomorphism with another object f ∈ IsoC(C,B). Then (C, (πi ◦ f)i∈I) is also a
product of (Ai)i∈I .

Theorem. Let X ∈ ob(C). The Hom-functor C(X,−) preserves products.

Note that in Set, this corresponds to (A× B)X ∼= AX × BX , while in Setop we
get XA+B ∼= XA ×XB .

Proof. Let (B, (πi)i∈I) be a product of (Ai)i∈I . Using the correspondence between
universal morphisms and functor representations, we have a natural isomorphism
φ from Cop(B,−) = C(−, B) to

∏
i∈I C(−, Ai) such that φB(idB) = (πi)i∈I .

In particular, we have an isomorphism

φX : C(X,B) →
∏
i∈I

C(X,Ai)

Let F = C(X,−) be the Hom-functor we are interested in. Then
∏

i∈I C(X,Ai),
the set-theoretic product of the sets F (Ai), is a categorical product of this family
of objects in Set with the usual projections pi = “take the i-th coordinate”. By
applying the previous proposition to this product and φX , we get another product
(C(X,B), (pi ◦ φX)i∈I) of (F (Ai))i∈I in Set.

The theorem that we want to prove is that F preserves products, so our goal is
to show that (F (B), (F (πi))i∈I) is a product of (F (Ai))i∈I . To do so, we just need
to show that it coincides with the product we obtained above, that is:

(F (B), (F (πi))i∈I) = (C(X,B), (pi ◦ φX)i∈I)

By definition, F (B) = C(X,B). The equalities between projections require a bit
more work. Let f ∈ C(X,B). We must check that

∀i ∈ I, C(X,πi)(f) = pi(φX(f))

Observe that

(πi ◦ f)i∈I = (C(f,Ai)(πi))i∈I =

(∏
i∈I

C(f,Ai)

)
((πi)i∈I)

and we knew from the beginning that φ(idB) = (πi)i∈I . By naturality of φ,(∏
i∈I

C(f,Ai)

)
(φB(idB)) = (φX ◦ C(f,B))(idB) = φX(idB ◦ f) = φX(f)

In conclusion, (πi ◦ f)i∈I = φX(f). Since C(X,πi)(f) = πi ◦ f and pi takes the i-th
coordinate, this is equivalent to what we wanted to check. □

If we combine this theorem with the following property:



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HANDOUT FOR LECTURE 10 5

Proposition. If F ∼= G and F preserves products, then so does G.
(proof left as exercise) to derive the following consequence:

Corollary. Representable functors preserve products.
Now that we have treated the case of representable functors, let’s do the case of

adjoints, which is arguably the more important one.
Theorem. If a functor F is a right adjoint, then it preserves products.

Dually, if a functor F is a left adjoint, then it preserves coproducts.
(Beware: to be a right adjoint is to have a left adjoint.) There are many examples,

let’s talk about them before proving the theorem:
• The forgetful functor U : Mon → Set is right adjoint to the “free monoid”

functor (−)∗. Therefore, it preserves products. Indeed, × on monoids is
built using × on the underlying sets!

• However, one can find monoids A and B with a coproduct (C, ι1, ι2) such
that U(C) 6∼= U(A) + U(B) (for example, if neither A nor B is a singleton,
thenC is infinite even ifA andB are finite). Thanks to the theorem, and to
the fact that coproducts are unique up to isomorphism, this is a sufficient
proof that U is not a left adjoint.

• But since (−)∗ is a left adjoint, (A + B)∗ is a coproduct of A∗ and B∗ in
Mon. Taking A = B = {1} we get (up to isomorphism) the example that
{a, b}∗ is a coproduct of the monoid N with itself (cf. Homework 2).

• The forgetful preorder-to-set functor has both a left adjoint (discrete order)
and a right adjoint (full preorder), so it is both a right adjoint and a left
adjoint. This is consistent with the fact that products of preorders can be
built using products of sets, and coproducts of preorders can also be built
using coproducts of sets.

• From the adjunction (−)×A a Set(A,−), we get
– Set(A,B × C) ∼= Set(A,B) × Set(A,C) (also a consequence of the

fact that Hom-functors preserve products)
– (B+C)×A ∼= (B×A)+(C×A) – so even though this distributivity law

of products over coproducts does not work in arbitrary categories, it
has a categorical explanation in Set! (And in other cartesian closed
categories, see Olivier Laurent’s part of the course)

Proof that right adjoints preserve products (idea). Let L a R with R : C → D. Let
(B, (πi)i∈I) be a product of (Ai)i∈I in C. For any Y ∈ ob(D),

D(Y,R(B)) ∼= C(L(Y ), B) ∼=
∏
i∈I

C(L(Y ), Ai) ∼=
∏
i∈I

D(Y,R(Ai))

Each∼= comes from a component of some natural isomorphism, so with some care
we can get a natural isomorphism between D(−, R(B)) and

∏
i D(−, R(Ai)). This

shows thatR(B)with a certain choice of projections is a product of (R(Ai))i∈I , and
with a bit more work one can check that these projections are equal to R(πi). □

A FEW SUPERFICIAL WORDS ABOUT LIMITS AND COLIMITS
We can generalize the preservation theorems above to a much larger class of

stuff defined by universal properties. This is a good pretext to present an important
notion of category theory, mostly for cultural interest (no technical manipulation).

Let J and C be two categories. The diagonal functor ∆: C → [J , C] maps every
object X ∈ ob(C) to the constant functor J → C (i.e. object of [J , C]) equal to X
– ∆(X)(Y ) = X and ∆(X)(f) = idX – and every morphism to a constant natural
transformation – ∆(g)Y = g for g ∈ C(X,X ′).



6 DECEMBER 21, 2023 — L. T. D. NGUYỄN

Definition. A limit in C is a universal morphism from the above diagonal functor
∆: C → [J , C] to some object F ∈ [J , C], for some category J .

What does this mean? Let’s take J to be a very simple category, with only 3
objects and 2 non-identity morphisms, drawn below (left). A functor F : J → C
corresponds to choosing 3 objects and 2 morphisms in C, as follows (right):

1

2 0

∗

∗

A1

A2 B

f1

f2

∆(X) corresponds to the case where the 3 chosen objects are equal toX , and the 2
chosen morphisms are idX . So a natural transformation η : ∆(X) ⇒ F is a family
(ηX)X∈{0,1,2} making the diagram below commute:

X

X X A1

A2 B

f1

f2

idX

idX

η2

η0

η1

or equivalently
X A1

A2 B

f1

f2

η0η2

η1

The morphism η0 is kind of redundant, it’s determined by η0 = f1 ◦ η1 = f2 ◦ η2,
so we can omit it in diagrams. If (X, η) is a universal morphism from ∆ to F , its
universal property is given by the commutative diagram below; the quantifiers in
the statement are “for every (Y, g), there exists a unique h”:

Y

X A1

A2 B

f1

f2

η2

η1
g2

g1

∃!h

This special case of limit is called a pullback: (X, η1, η2) is the pullback of (f1, f2).
Two examples:

• In Set, if A1 and A2 are two subsets of B, and f1, f2 are their inclusion
maps, then the intersection A1 ∩A2 with two inclusion maps is a pullback
of f1 and f2.

• If B is a terminal object and fi is the unique morphism from Ai to the
terminal object, then a pullback is the same as a product of A1 and A2.

Pullbacks are the limits whose “shape” J is a specific category with 3 objects.
Other kinds of limits can be obtained by varying J . Dually, colimits in C are limits
in Cop, i.e. universal morphisms from some F to ∆: C → [C,J ].
Theorem (not proved here). Representable functors and right adjoints preserve limits.
Left adjoints preserve colimits. (This indeed generalizes what we saw before, since a product
is the same as a limit whose shape J is a category where the only morphisms are identities.)
Remark. Some textbooks derive the preservation of limits by adjoint functors from
the preservation of limits by representable functors (whereas, for products, we
gave independent proofs of the two cases). This argument is elegant but requires
the Yoneda lemma, one of the many important things in category theory that we did
not have the time to cover.


	Monads (continued)
	Preservation of (co)products
	A few superficial words about limits and colimits

