# (CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 5 

DECEMBER 19, 2023 - L. T. D. NGUYỄN

Exceptionally, this homework is 2 pages long: there is stuff on the verso.

## Exercise 1

Let $(M, \cdot, e)$ be a monoid. The writer monad for $M$ on Set is defined by:

- The endofunctor $W_{M}=(-) \times M$, i.e. $\begin{aligned} A & \mapsto A \times M \\ f & \mapsto f \times \mathrm{id}_{M}\end{aligned}$
- The unit and multiplication

$$
\begin{aligned}
\eta_{A}: A & \rightarrow A \times M & \mu_{A}:(A \times M) \times M & \rightarrow A \times M \\
a & \mapsto(a, e) & \left(\left(a, m_{1}\right), m_{2}\right) & \mapsto\left(a, m_{1} \cdot m_{2}\right)
\end{aligned}
$$

We admit that $\eta_{A}$ and $\mu_{A}$ are natural in $A$, and that the unit laws hold.

1. Check that the associativity law for $\mu$ holds.
2. Describe the composition of $f: A \rightarrow W_{M}(B)$ with $g: B \rightarrow W_{M}(C)$ in the Kleisli category Set $_{W_{M}}$.
3. We now take $(M, \cdot, e)$ to be the free monoid $\left(\mathbb{N}^{*}, \cdot,[]\right)$. Let print $\in \operatorname{Set}_{W_{\mathbb{N}^{*}}}(\mathbb{N}, \mathbb{N})$ - i.e. print: $\mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}^{*}$ - be defined by print $(n)=(n,[n])$. Describe the result of the following composition in $\operatorname{Set}_{W_{\mathbb{N}^{*}}}$ :

where the functor $F:$ Set $\rightarrow \boldsymbol{\operatorname { S e t }}_{W_{\mathbb{N}^{*}}}$ is the left part of the adjunction induced by the monad $W_{\mathbb{N}^{*}}$. (No detailed justification necessary.)

Exercise 2
Let's look at adjunctions between preorders (also called Galois correspondences):
preordered set $\mid$ category (small, with $|\mathcal{C}(A, B)| \leqslant 1$ )
monotone function functor [topic of this exercise] adjunctions
They are important for instance in abstract interpretation (which is used for static analysis of programs). Two monotone functions $\ell: X \rightarrow Y$ and $r: Y \rightarrow X$ are adjoint - notation: $\ell \dashv r$ - when, writing $\leqslant$ for the preorders both on $X$ and on $Y$,

$$
\forall x \in X, \forall y \in Y, \ell(x) \leqslant y \Longleftrightarrow x \leqslant r(y) \quad \text { ["hom-set isomorphism" point of view] }
$$

For example, there is an adjunction $\iota \dashv\lfloor-\rfloor$ between the inclusion map $\iota: \mathbb{Z} \rightarrow \mathbb{R}$ $(\iota(n)=n)$ and the "floor" function which rounds down a number $(\lfloor 3.14\rfloor=3)$.

Questions 3 and 4 are just special cases of theorems on adjoint functors from the lectures, but you should provide proofs "from scratch" for preorders.

1. We just described the right adjoint to $\iota$, but it also has a left adjoint - what is it?
2. Let $f: A \rightarrow B$ be a map between two sets. The associated inverse image map $f^{-1}: \mathcal{P}(B) \rightarrow \mathcal{P}(A)$ and direct image map $\exists_{f}: X \in \mathcal{P}(A) \mapsto f(X) \in \mathcal{P}(B)$ are both monotone with respect to inclusion. Show that $\exists_{f} \dashv f^{-1}$.
3. ["unit+counit" point of view] In general, show that $\ell \dashv r$ if and only if

$$
\forall x \in X, x \leqslant r(\ell(x)) \quad \text { and } \quad \forall y \in Y, \ell(r(y)) \leqslant y
$$

4. [preservation of products] Recall that $y$ is said to be an infimum of $S \subseteq Y$ when

$$
\forall z \in Y,[z \leqslant y \Longleftrightarrow(\forall s \in S, z \leqslant s)]
$$

Through the preorder/category correspondence, infima correspond to products. For example, $\bigcap S=\bigcap_{X \in S} X$ is the unique ${ }^{1}$ infimum in $(\mathcal{P}(\mathcal{A}), \subseteq)$ of $S \subseteq \mathcal{P}(A)$.
(a) Show that if $r: Y \rightarrow X$ is a right adjoint (i.e. $\ell \dashv r$ for some $\ell$ ) then $r$ preserves infima: if $y$ is an infimum of $S$ then $r(y)$ is an infimum of $\{r(s) \mid s \in S\}$.
(b) What does this property concretely mean concerning $f^{-1}$ (cf. question 2)?
(c) What does the dual property concretely mean concerning $\exists_{f}$ ?
5. ["baby adjoint functor theorem"] Let $r: Y \rightarrow X$ be a monotone function. Suppose also that $r$ preserves infima and that every subset of $Y$ admits some infimum. Let

$$
\ell: x \in X \mapsto \text { some choice }{ }^{2} \text { of infimum of }\{y \in Y \mid x \leqslant r(y)\}
$$

Using the characterization of Question 3, show that $\ell \dashv r$.

## The questions stop here!

... but here are some examples of the "baby adjoint functor theorem":

- Let $M$ be a monoid. Recall that a submonoid of $M$ is a subset containing the unit element and closed under the binary operation. An intersection of submonoids is always a submonoid, and the inclusion map

$$
\iota^{\prime}: \text { Submonoids }(M) \rightarrow \mathcal{P}(M)
$$

preserves intersections, so it has an left adjoint $\langle-\rangle \dashv \iota^{\prime}$. According to Question 5, we have the explicit formula

$$
\begin{aligned}
\langle-\rangle: \mathcal{P}(M) & \rightarrow \operatorname{Submonoids}(M) \\
X & \mapsto\langle X\rangle=\bigcap\{N \text { submonoid of } M \mid X \subseteq N\}
\end{aligned}
$$

Thus, $\langle X\rangle$ is precisely the submonoid of $M$ generated by $X$.

- In $(\mathcal{P}(A), \subseteq)$, unions are suprema (dual to infima). For $f: A \rightarrow B$, the dual version of the baby adjoint functor theorem tells us that, since

$$
f^{-1}(\bigcup S)=\bigcup_{X \in S} f^{-1}(X)
$$

$f^{-1}$ must have a right adjoint: $f^{-1} \dashv \forall_{f}$. Explicitly, we have (this is not quite the formula of Question 5, but it's related):

$$
\begin{aligned}
& \forall_{f}(X)=\left\{b \in B \mid \forall a \in f^{-1}(\{b\}): a \in X\right\} \\
& \exists_{f}(X)=\left\{b \in B \mid \exists a \in f^{-1}(\{b\}): a \in X\right\}=f(X)
\end{aligned}
$$

[^0]
[^0]:    ${ }^{1}$ It is unique because $\subseteq$ is a partial order, but there are preorders in which infima are not unique.
    ${ }^{2}$ Non-uniqueness (see previous footnote) is why we must make a choice.

