(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 4

DECEMBER 12,2023 - L. T. D. NGUYỄN

Exercise 1

Let (\mathcal{C}, \times, T) be a cartesian category. The goal of this exercise is to look at an example of reasoning using the pairing $\langle f, g\rangle: A \rightarrow B \times C$ of two morphisms $f: A \rightarrow B$ and $g: A \rightarrow C$, and the equations $\pi_{1}^{B, C} \circ\langle f, g\rangle=f$ and $\pi_{2}^{B, C} \circ\langle f, g\rangle=g$ relating it to the projections.

1. Let $f_{1}: A_{1} \rightarrow B_{1}$ and $f_{2}: A_{2} \rightarrow B_{2}$. Write down the definition of the functorial image $f_{1} \times f_{2}: A_{1} \times A_{2} \rightarrow B_{1} \times B_{2}$, defined in Lecture 5 , in terms of the pairing operation $\langle-,-\rangle$ and projections.
2. Let $X, Y \in \mathrm{ob}(\mathcal{C})$. Recall that since $\left(X \times Y, \pi_{1}^{X, Y}, \pi_{2}^{X, Y}\right)$ and $\left(Y \times X, \pi_{2}^{Y, X}, \pi_{1}^{Y, X}\right)$ are both products of X and Y, there is a unique morphism $\sigma^{X, Y}: X \times Y \rightarrow Y \times X$ such that $\pi_{2}^{Y, X} \circ \sigma^{X, Y}=\pi_{1}^{X, Y}$ and $\pi_{1}^{Y, X} \circ \sigma^{X, Y}=\pi_{2}^{X, Y}$, and it is an iso. (This is the "uniqueness up to unique iso" of universal properties, in the case of products.)

Write down the definition of $\sigma_{A, B}$ using pairings and projections, and check that it satisfies the above equations.
3. Prove that $\sigma^{B_{2}, B_{1}} \circ(g \times f) \circ \sigma^{A_{1}, A_{2}}=f \times g$.

Exercise 2

Consider the following functor - it is the composition of the forgetful functor Ord \rightarrow Set with the functor F introduced in Homework 2:

$$
\begin{aligned}
G: \text { PreOrd }^{\mathrm{op}} & \rightarrow \text { Set } \\
\left(A, \preceq_{A}\right) \in \mathrm{ob}\left(\text { PreOrd }^{\mathrm{op}}\right) & \mapsto \operatorname{UpClosed}\left(A, \preceq_{A}\right) \\
f \in \mathbf{P r e O r d}^{\mathrm{op}}(A, B) & \mapsto\left(X \in \operatorname{UpClosed}\left(A, \preceq_{A}\right) \mapsto f^{-1}(X)\right)
\end{aligned}
$$

(Reminder: $\operatorname{UpClosed}\left(A, \preceq_{A}\right)$ consists of subsets $X \subseteq A$ which are upwards closed, i.e. $\forall x \in X, \forall a \in A, x \preceq a \Rightarrow a \in X$.)

Let $\Omega=\{0,1\}$ equipped with the partial order such that $0 \leqslant 1$.

1. Show that G is representable, using Ω as part of the representation.
2. For any set X, let $H(X)=\Omega^{X}$ equipped with the product order (which was used in Lecture 4 to explicitly construct categorical products of arbitrary families in Ord and PreOrd). Explain how to extend H to a functor Set ${ }^{\text {op }} \rightarrow$ PreOrd. (Say how H acts on morphisms; you need not check the functor axioms.)
3. Prove that we have an adjunction $H^{\mathrm{op}} \dashv G$, using the "natural isomorphism between homsets" definition.
4. Describe the unit and counit of this adjunction.
