(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 2

NOVEMBER 28, 2023 — L. T. D. NGUYÊN

Exercise 1

We say that a subset $X \subseteq A$ of a set A is *upwards closed* for a preorder \preceq on A when $\forall x \in X, \forall y \in A, x \preceq y \Rightarrow y \in X$. Let UpClosed (A, \preceq) be the set of all upwards closed subsets of A for \preceq . Recall that subsets of A are partially ordered by the inclusion relation \subseteq .

Verify that the following data defines a functor *F*:

$$F: \mathbf{PreOrd}^{\mathrm{op}} \to \mathbf{Ord}$$
$$(A, \preceq_A) \in \mathrm{ob}(\mathbf{PreOrd}^{\mathrm{op}}) \mapsto (\mathrm{UpClosed}(A, \preceq_A), \subseteq)$$
$$f \in \mathbf{PreOrd}^{\mathrm{op}}(A, B) \mapsto (X \in \mathrm{UpClosed}(A, \preceq_A) \mapsto f^{-1}(X))$$

Exercise 2

Let a and b be two distinct letters. Let $repeat_a: n \in \mathbb{N} \mapsto [a, \ldots, a]$ (with n times a) and $repeat_b: n \in \mathbb{N} \mapsto [b, \ldots, b]$ (with n times b); they are monoid homomorphisms (with respect to addition on \mathbb{N}).

1. Let M be a monoid and $(f,g) \in \mathbf{Mon}(\mathbb{N}, M)^2$. Show that there is a unique morphism $h \in \mathbf{Mon}(\{a,b\}^*, M)$ such that $f(1) = h(\mathtt{repeat}_a(1))$ and $g(1) = h(\mathtt{repeat}_b(1))$. (Hint: universal property of free monoids.)

2. Show that $(\{a, b\}^*, \mathtt{repeat}_a, \mathtt{repeat}_b)$ is a coproduct of \mathbb{N} with itself in the category of monoids **Mon**.

Exercise 3

1. Let C be a category, 1 be a terminal object of C and $A \in ob(C)$. Prove that there exist morphisms $\pi_1 \in C(A, A)$ and $\pi_2 \in C(A, 1)$ such that (A, π_1, π_2) is a product of A with 1.

2. What is the dual of this statement? That is, what does the statement above concerning C say about the category $D = C^{op}$?