(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 1

NOVEMBER 21, 2023 — L. T. D. NGUYÊN

Exercise 1

Let C be the full subcategory of Set whose objects are \emptyset and $\{4\}$.

1. What are the morphisms of this category? (Recall that for any set *X*, there is a single relation between \emptyset and *X*, and this relation is a function.)

2. Exhibit a functor $F : C \to \mathbf{Set}$ such that:

- $F(\emptyset) = F(\{4\}) = \mathbb{N},$
- there exists some morphism f of C such that F(f) is the function $n \mapsto n+1$.

3. Show that there does *not* exist any morphism g such that $F(g) = F(f) \circ F(f)$. In particular, why *cannot* we say that " $F(f \circ f) = F(f) \circ F(f)$ " even though F is a functor?

Exercise 2

Throughout this exercise, we fix some monoid M. Let I be the subset of M that consists of the invertible elements. We admit that I is a submonoid of M, and that it is a group. Let $i: I \to M$ be the inclusion map defined by $\iota(y) = y$.

1. Show that the following universal property holds: for every group *G* and monoid homomorphism $h: G \to M$, there exists a unique homomorphism $h': G \to I$ such that $h = i \circ h'$. (Hint: what does that mean concerning each h(x) for $x \in G$?)

2. Let *J* be a group and $j: J \to M$ be a homomorphism. Suppose that the above universal property holds for (J, j) instead of (I, i): for every group *G* and monoid homomorphism $h: G \to M$, there exists a unique homomorphism $h': G \to J$ such that $h = j \circ h'$. Prove that *I* and *J* are isomorphic.

(You should be able to do that using only the universal property, without using the "concrete" definition of I.)

3. Can you express this as a universal morphism from *F* to *M* for some functor *F* seen in the lectures?