
(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
LECTURE 10

14 OCTOBER 2024 — L. T. D. NGUYỄN

Last time: Monads induced by adjunctions = internal monoids in categories of
endofunctors (and connections with side effects in programming).

Note that the “internal monoid” definition is useful to check that a monad is
a monad without having to guess an adjunction: it suffices to verify that µ and η
satisfy the associativity and unit laws. For instance, we may turn the “option data
type” into a monad over Set by defining directly µ and η as follows:

µA : Option(Option(A)) → Option(A) ηA : A → Option(A)

Some(Some(a)) 7→ Some(a) a 7→ Some(a)

Some(None) 7→ None

None 7→ None

To show that it is indeed a monad, it suffices to check the associativity and unit
laws. This can be done manually, for instance one of the cases for associativity is:

Some(None) None

Some(None) None

µOption(A)

Option(µA) µA

µA

(the other cases for associativity start with the values None, Some(Some(None)) or
Some(Some(Some(a))) in the upper left corner, and then there remains to check the
unit laws; let us skip all this).

The option monad models the computational effect of partiality, in other words,
of the possibility of failure. A Kleisli morphism f ∈ SetOption(X,Y ), i.e. a function
X → Option(Y ), can indeed be seen as a partial function X ⇀ Y — we shall come
back to this point. (A partial function is a function that is possibly undefined on
part of its domain, such as (x 7→ 1/x) : R ⇀ R.)

To conclude our study of monads let us mention that, among the adjunctions
that induce a monad, the Kleisli adjunction is particularly canonical.
Theorem. Let F a G be an adjunction with F : C → D and G : D → C. Let (M,µ, η)
be the induced monad (soM = G ◦ F ). Let us write L : C → CM and R : CM → C be the
pair of adjoint functors defined at the end of the last lecture. There exists a unique functor
H : CM → D such thatH ◦ L = F and R = G ◦H .

CT D

C

∃!H

R

GL

F

M

⊣ ⊣

1



2 14 OCTOBER 2024 — L. T. D. NGUYỄN

(We will not prove this theorem in this course.)
Remark. This is an initiality property of the Kleisli adjunction: it says that it is an
initial object in a category whose objects are adjunctions inducing the monad M ,
and whose morphisms are functors subject to certain conditions.

COMONADS
This notion is dual to monads:

Definition. A comonad on C is a monad on Cop.
Explicitly, a comonad (W,ν, ε) on C consists of an endofunctor W : C → C with

two natural transformations ν : W ⇒ W ◦W (comultiplication) and ε : W ⇒ IdC
(counit) such that the following equivalent conditions hold:

• W = F ◦ G and ν = F (ηG) for some adjunction F a G with unit η and
counit ε — the comonad is said to be induced by this adjunction;

• dual versions of the associativity and unitality laws hold: comonads are
“internal comonoids in [C, C]” (internal comonoids will come up again in
Olivier Laurent’s half of the course).

Proposition. These two conditions are indeed equivalent. In fact, any comonad (W,ν, ε)
on C induced by a “coKleisli adjunction”; the coKleisli category CW has the same objects
as C, and CW (A,B) = C(W (A), B).
Proof. By applying the theorems on monads from the previous lecture to Cop. □
Let us give an example of a comonad. Let (C,&,>) be a cartesian category and
A ∈ ob(C). Let W = (−&A) (partial application of the product bifunctor) and
νX = 〈idX&A, π

X,A
2 〉 ∈ C(X &A, (X &A) &A) εX = πX,A

1 ∈ C(X &A, X)

Both νX and εX are natural in X , and one can check that they define a comonad
structure on (−&A).

(Remark: the dual of this example is themonad−⊕A; forA = {None} ∈ ob(Set)
we get something naturally isomorphic to the Option monad!)

ISOMORPHISM AND EQUIVALENCE OF CATEGORIES
Wementioned earlier thatmorphisms inSetOption are “the same thing” as partial

functions. This can be made formal by saying that SetOption is isomorphic to the
category PSet of sets and partial functions.
Definition. An isomorphism of categories is a functor F : C → D such that, for some
G : D → C, we have F ◦G = idD and G ◦ F = idC .

The following defines an isomorphism of categories:
SetOption → PSet

X set 7→ X

f ∈ SetOption(X,Y ) 7→


X ⇀ Y

x 7→

{
y if f(x) = Some(y)

undefined if f(x) = None


(the fact that it is a functor, and the definition of the inverse, are left as exercises).
Another example of isomorphism of categories is the self-duality of Rel:

Reverse : Rel → Relop (with inverse Reverseop)
X 7→ X

R ⊆ X × Y 7→ {(y, x) | (x, y) ∈ R}



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 10 3

Note that in both these examples, the functors are “identity on objects”. When
a construction that purports to show that two categories are somehow “the same”
changes the objects, it often turns out that the notion of isomorphism of categories
is slightly too restrictive. Instead, equivalences of categories are more frequent.
Definition. An equivalence of categories between C and D is a pair of functors
F : C → D and G : D → C such that F ◦G ∼= idD and G ◦ F ∼= idC .

The difference with isomorphisms of categories is that equalities of functors
have been relaxed to natural isomorphisms.

For example, consider the category Setpt of pointed sets:
objects: pairs (X,x) where X is a set and x ∈ X
morphisms from (X,x) to (Y, y): functions f : X → Y such that f(x) = y

The idea is that the distinguished element x ∈ X can be seen as the “error value”
in X . The following is an equivalence of categories:

F : PSet → Setpt

X 7→ (Option(X),None)

(f : X ⇀ Y ) 7→

Some(x) 7→

{
Some(y) if f(x) = y

None if f(x) undefined
None 7→ None


G : Setpt → PSet

(X,x) 7→ X \ {x}

f ∈ Setpt((X,x), (Y, y)) 7→


X \ {x} ⇀ Y \ {y}

x′ 7→

{
undefined if f(x′) = y

f(x′) otherwise


Note that G(F (X)) = {Some(x) | x ∈ X} is not equal to X , only in bijection with it;
and this bijection is natural in X , that is, G ◦ F ∼= IdPSet. (Beware: while ordinary
bijections are indeed isomorphisms in PSet, naturality should be checked with
respect to partial functions!) Similarly, F ◦G ∼= IdSetpt .

Other examples of equivalences of categories include:
Mon is equivalent to 1obCat: that is, to the category of small categories

with only 1 object. We have seen previously that M ∈ ob(Mon) 7→ CM
makes homomorphisms inMon(M,N) correspond to functors CM → CN ,
so it defines a functor F : Mon → 1obCat. In the converse direction,
G : 1obCat → Mon sends a category with one object to the monoid of
endomorphisms of its unique object. We have G ◦ F = IdMon. However,
F (G(C)) = a category with the same morphisms as C, but with its unique
object “renamed” into the constant ∗ used by the M 7→ CM construction.
Thus F (G(C)) is not equal to C, but they are isomorphic, naturally in C.

PreOrd is equivalent to the category of small thin categories: the same idea
as above, where a thin category is defined to be a category where for any
two objects, there is at most one morphism between them.

SetI vs Set/I : Let I be a set. Set/I is the category:
• whose objects are pairs (A, f) with f : A → I ;
• whose morphisms from (A, f) to (B, g) are functions h : A → B such

that f = g ◦ h (which can be pictured as a commuting triangle).
(This is a variant of the “F ↓ X” from Lecture 5.)

Let is sketch an equivalence between Set/I and the product category
SetI . The functor Set/I → SetI sends (A, f : A → I) to (f−1(i))i∈I ;



4 14 OCTOBER 2024 — L. T. D. NGUYỄN

in the other direction, (Ai)i∈I is sent to the dependent sum
∑

i∈I Ai with
the map (i, a) 7→ i. (The actions on morphisms are the obvious ones.)
Their composition turns (Ai)i∈I into ({i}×Ai)i∈I which is indeed naturally
isomorphic to, but not equal to, what we started with.

This is a basic example of the correspondences between “fibered” and
“indexed” points of view. Such correspondences play an important role in
the semantics of polymorphic types and dependent types.

The terminal category (with only 1 object and its identity morphism): it is
equivalent to any category with exactly one morphism between any two
objects, i.e. any thin category that corresponds to a trivial preorder; the
number of objects doesn’t matter (it may be uncountably infinite…).

Proposition. Equivalences of categories are closed under composition.
Proof. Let F : C → D, G : D → C, F ′ : D → E and G′ : E → D. Let α : G ◦ F ⇒ IdC
and β : G′ ◦ F ′ ⇒ IdD. Then α ◦G(βF ) : G ◦G′ ◦ F ′ ◦ F ⇒ IdC ; and if α and β are
natural isomorphisms, then so is α ◦G(βF ). Symmetrically, from F ◦G ∼= IdD and
F ′ ◦G′ ∼= IdE one can get F ′ ◦ F ◦G ◦G′ ∼= IdE . □

Next, we state without proof some key properties of equivalences of categories.
Proposition. The following are equivalent:

• F : C → D is part of an equivalence of categories;
• the functor F has all three properties below:

full: for all A,B ∈ ob(C), the map f ∈ C(A,B) 7→ F (f) ∈ D(F (A), F (B))
is surjective;

faithful: for all A,B, the map f ∈ C(A,B) 7→ F (f) ∈ D(F (A), F (B)) is
injective;

essentially surjective: for every X ∈ ob(D) there exists A ∈ ob(C) such
that F (A) ∼= X .

The top-to-bottom implication is not difficult. The converse however uses the
axiom of choice!
Theorem (Adjoint equivalences). If F and G form an equivalence of categories, then
there are adjunctions F a G and G a F .

More precisely, one can find natural isomorphisms η : Id ⇒ G◦F and ε : F ◦G ⇒ Id
that are the unit and counit for an adjunction F a G (they may be different from the isos
originally witnessing that F and G form an equivalence of categories). Automatically,
then, ε−1 and η−1 are respectively the unit and counit for an adjunction G a F .
Corollary. If F is part of an equivalence of categories, it preserves both products and
coproducts.
Proof. We have seen that right adjoints preserve products, and dually left adjoints
preserve coproducts. According to the above theorem, F is both a left adjoint and
a right adjoint. □

This is a general phenomenon: useful structure in category theory tends to be
preserved by equivalences. Thus, equivalences are a well-behaved notion of being
“essentially the same category”.

CONCLUDING CULTURAL REMARKS: YONEDA, PRESHEAVES, AND (CO)LIMITS
In our study of representable functors, we saw that a representation (A, θ), where

θ : C(A,−) ⇒ D(X,F (−)) is a natural bijection, is entirely characterised by a uni-
versal morphism (A,φ) with φ = θA(idA). The moral of the story is that “a big
natural iso is fully characterised by a small piece of data”.

According to theYoneda lemma, thisworks for natural transformations in general:



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 10 5

Lemma (Yoneda). (θ : C(A,−) ⇒ F ) 7→ θA(idA) ∈ F (A) is a bijection.

Proof idea. By naturality, one can show that θB(f) = F (f)(θA(idA)) for f ∈ C(A,B)
— the idea is the same as in Lecture 7 concerning representable functors! This
shows injectivity. For surjectivity one can check that f ∈ C(A,B) 7→ F (f)(x) ∈
F (B) is natural in B for any x ∈ F (A). □

Corollary (Yoneda embedding).
C → [Cop,Set]

X 7→ C(−, X)
is a full and faithful functor.

Idea. The Yoneda lemma applied to Cop gives us, in particular, a natural bijection
between the natural transformations C(−, X) ⇒ C(−, Y ) and the morphisms in
C(X,Y ). □

The functor category [Cop,Set] is also called the category of presheaves (in French:
préfaisceaux) over C; it is a sort of “completion” of C with nice properties. In fact it
is C with all colimits freely added. Which is a good pretext to talk about limits and
colimits!

Let J and C be two categories. The diagonal functor ∆: C → [J , C] maps every
object X ∈ ob(C) to the constant functor J → C (i.e. object of [J , C]) equal to X
– ∆(X)(Y ) = X and ∆(X)(f) = idX – and every morphism to a constant natural
transformation – ∆(g)Y = g for g ∈ C(X,X ′).

Definition. A limit in C is a universal morphism from the above diagonal functor
∆: C → [J , C] to some object F ∈ [J , C], for some category J .

What does this mean? Let’s take J to be a very simple category, with only 3
objects and 2 non-identity morphisms, drawn below (left). A functor F : J → C
corresponds to choosing 3 objects and 2 morphisms in C, as follows (right):

1

2 0

∗

∗

A1

A2 B

f1

f2

∆(X) corresponds to the case where the 3 chosen objects are equal toX , and the 2
chosen morphisms are idX . So a natural transformation η : ∆(X) ⇒ F is a family
(ηX)X∈{0,1,2} making the diagram below commute:

X

X X A1

A2 B

f1

f2

idX

idX

η2

η0

η1

or equivalently
X A1

A2 B

f1

f2

η0η2

η1

The morphism η0 is kind of redundant, it’s determined by η0 = f1 ◦ η1 = f2 ◦ η2,
so we can omit it in diagrams. If (X, η) is a universal morphism from ∆ to F , its
universal property is given by the commutative diagram below; the quantifiers in



6 14 OCTOBER 2024 — L. T. D. NGUYỄN

the statement are “for every (Y, g), there exists a unique h”:

Y

X A1

A2 B

f1

f2

η2

η1
g2

g1

∃!h

This special case of limit is called a pullback: (X, η1, η2) is the pullback of (f1, f2).
Two examples:

• In Set, if A1 and A2 are two subsets of B, and f1, f2 are their inclusion
maps, then the intersection A1 ∩A2 with two inclusion maps is a pullback
of f1 and f2.

• If B is a terminal object and fi is the unique morphism from Ai to the
terminal object, then a pullback is the same as a product of A1 and A2.

Pullbacks are the limits whose “shape” J is a specific category with 3 objects.
Other kinds of limits can be obtained by varying J . Dually, colimits in C are limits
in Cop, i.e. universal morphisms from some F to ∆: C → [C,J ].
Theorem. Right adjoints preserve limits, and left adjoints preserve colimits.

(This indeed generalizes what we saw before, since a product is the same as a
limit whose shape J is a category where the only morphisms are identities.)


	Comonads
	Isomorphism and equivalence of categories
	Concluding cultural remarks: Yoneda, presheaves, and (co)limits

