(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
LECTURE 9

10 OCTOBER 2024 — L.T.D.NGUYEN

Last time: adjoint functors; preservation of (co)products.

Proof that right adjoints preserve products. Let L 4 Rwith R: C — D. Let (B, (7;)icr)
be a product of (A;);e; in C. Recall (from Lecture 7 on representable functors) that
this is equivalent to having a natural bijection

C(_7 B) = HC(_a Al)
iel
that maps idp to (m;);c1, which implies that it maps any f to (m; o f);c;. We have:
icl iel
This shows that R(B) is a product of (R(A;))1, for a family of projections which
is the image of id gy by this natural bijection (obtained by composition), that is:

((Bx.a, 0 (M0 =) 0 05ip p)(idr(B))) e,
To simplify this expression and conclude, it suffices to observe that, by naturality,
we have 0x 4, o (m;0—) = (R(m;) 0o —) 0 0x 4,. O
~—~— ——

C(L(X),mi) D(X,R(m;))

MonNabs
L

Definition. Consider an adjunction C L D with unit and counit ¢.

~N__

R
The monad induced by this adjunction is (M, 1, 7) where

M=RoL w= R(er) = (R(g))L (cf. Lecture 6)
Thus M : C — C is an endofunctor, n: Id¢ = M and
p: Ro(LoR)oL = RolL ie. pw: MoM= M
We call) the unit of the monad, and p its multiplication.

Note that the types of and 1 only refer to M, not to L and R separately. This
will allow us to give later a direct definition of monads of the form “these diagrams
involving n and ¢ must commute”.

First, we look at monads on Set.

List monad: From the free/forgetful adjunction (—)* 4 U we get a monad
(List,n,) where nx (z) = [x] and p “flattens” lists of lists:

ux : List(List(X)) — List(X)

[61,,€n]l—>€1£n
1

2 10 OCTOBER 2024 — L.T.D.NGUYEN

State monad: From the adjunction (—) x S - Set(S,—) we get a monad
(Stateg, n, 1) where Stateg(X) = Set(S, X x A) and

nx: X — Set(S, X x 5)

x> (s (x,8) (

px : Set(S, Set(S, X x S) x §) — Set(S, X x 5)
(

m i (s exxs(m(s)))

cf. Lecture 8)

where ey : (f,s') — f(s')forg: S — Y and s’ € S.
The surprising thing is that monads on Set can represent computational effects.!

Definition (“bind” operator). Let (M, i1, n7) be a monad with M : Set — Set. Let
me M(X)and f: X — M(Y). Weset m>>=f = puy (M(f)(m)).

For the list monad, this is the concat_map function in OCaml:
[T1, .. zp]>>=f = f(z1) ...« fzn)
For example [1, 2] >>=(x +— [0, 3z]) = [0, 3,0, 6]. We can also chain >>=:
[1,2]>>=(z — [0,3z] >>=(y — [z +y])) = [1,4,2, 8]
If we consider a list as an (ordered?®) nondeterministic superposition then the above
can be seen, informally, as the semantics of a nondeterministic program:
x < choose [1,2]; y < choose [0,3x]; return (z + y)

With this point of view, 77(z) = [z] is the deterministic choice of the “pure value” z.
The state monad corresponds to having a mutable global variable, let’s call it v:

old value of v new value of v

m € Stateg(X) <= m: S —- X x S
~—~
return value

nx(x) : s — (x,s) is a computation that returns = without changing the state, and
m>>=f = [s+ let (z,s') = m(s) in f(z)(s)]

So we can represent the semantics of z <— v; v := x4 1; return z (for S = N) as

get>>=(x — put(z + 1) >>=(y — n(z))) = (s—(s,s+1))
where get: S—> S xS put: S — Set(S, {x} x 5)
s (s,8) 5 [s’ — (*,s)}

(these translations between imperative programs and chains of >>= correspond
roughly to Haskell’s “do-notation”).
Let us mention yet another example of cultural interest: the continuation monad
below models effects that act on the control flow, such as call/cc.
Set(—,A)
T
Set(Set(—, A),A) comingfrom Set°? T Set

[Set(—,A)]°®

Given two functions f: X — M(Y) and g: Y — M (Z), there is now an obvious
way to “plug them together”: define

[>=>g=(z f(z)>>=g)
LA few bibliographic references about monads in programming were given in the notes for Lecture 1.

To represent nondeterminism without order and multiplicity one can use the covariant powerset
monad instead; see the coalgebra course (CR17).

(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 9 3

For example, (y — [1 4+ y, 2]) >=>(z — [0,3z]) = (y — [0, 3 + 3y, 0, 6]). Intuitively,
this is a kind of “composition of functions with effects” — here, the effect is a sort
of non-determinism. This new operator generalizes to arbitrary categories:

Definition. Let C be a category, M: C — C and p: M o M = M. We define the
Kleisli composition of g € C(B, M(C)) and f € C(A, M(B)) as

g<=<f=pcoM(g)of

Proposition. When C = Set, this general definition of Kleisli composition agrees with
the set-specific one (using >>=): g<=<f = f >=>g¢.

Proof idea. Just unfold the definitions. O

Since we have a composition operation, we’d like to use to build a category. But
to do so, we’d need to check that, for example, Kleisli composition is associative,
that is, (h<=<g)<=<f = h<=<(g<=<f). The conditions that make this work are
summed up in the following definition.

Definition. An internal monoid in [C,C] is a 3-tuple (M, u, n) where:

e M is an endofunctor of C
o u: MoM = M and n: Id¢ = M are natural transformations
e /. satisfies the associativity law: the diagram below commutes

MoMoM =22 Mo M

M(u)ﬂ ﬂu

MOM%M

e u and 7 satisfy the unit laws: the diagram below commutes

M M (n) MoM <2 af

M

(this is equivalent to asking the left triangle and the right triangle to com-
mute separately — each triangle corresponds to one of the two unit laws).

Remark. Recall that the notation [C, C] stands for the category of functors C — C
(with natural transformations as morphisms). Let us justify the name “internal
monoid” by analogy. By formally replacing ([C,C], 0,Id¢) with (Set, x, {x}), we
may define an internal monoid in Set as a set M with p: M x M — M (so pisa
binary operation on M) and é: {*} — M, where the “associativity law” becomes

pXidpy

MxMxM— MxM

id}w X MJ/ J//,L

MXM#M

stating that p is associative, while the unit laws become the fact that é(x) is a unit
for . So an internal monoid in Set is a monoid in the usual sense!

This analogy will be made technically rigorous in Olivier Laurent’s part of the
course using the notion of internal monoid in a monoidal category.

Proposition. Every monad on C induced by an adjunction is an internal monoid in [C, C].

4 10 OCTOBER 2024 — L.T.D.NGUYEN

Proof. Let L 4 R an adjunction inducing a monad (M, u,n).
If we expand the definitions M = Ro L and p = R(ey) in the associativity
diagram, we see that it is the image by R(—), of

€LOR

LOROLOR:LQR

LoR(s)“ “E

This commutes by naturality of . In fact, it corresponds to the equality of the two
ways of computing the horizontal composition ¢ ® ¢ (cf. Lecture 6):

D H D ﬂ D
\M_D/ \M_D/

Thus, st 0 jia = R(e ®)1 = 1o M(p).

As for the unit laws, they are consequences of the triangle identities relating the
unit and the counit of the adjunction that induces our monad. For instance the unit
law involving M (n) is the image by R of

Lo Ro L i} L
L(n)n "
L

(this diagram has been copy-pasted from the previous lecture; to match it with the
left triangle in the unit laws above, rotate it 90° clockwise...). O

Theorem. Given an internal monoid (M, p,n) in [C, C], the following data indeed defines
a category, called the Kleisli category Cas of M:

the objects of Cps are the same as of C

Cum(A, B) = C(A, M(B)) for any two objects A and B
composition is the Kleisli composition <=<

the identity for Ain Cpr(A, A) = C(A, M(A)) isna

Proof. For f € Cas(A, B) = C(A, M(B)), g € C(B, M(C)) and h € C(C, M(D)),
(h<=<g)<=<f=pupoM(upoM(h)og)o f

= pp o M(pp) o M(M(h)) o M(g) o f
(associativity law) = pup o puprpy o M(M(h)) o M(g) o f
)of

(naturality of) = up o M(h)o uc o M(g)o
= h<=<(g<=<f)

One can also show that f <=<ny = np<=<f = f for f € C(A4, M(B)) thanks to the
unit laws concerning x and 7. O

If we see a morphism f € Cy(A, B) = C(A, M(B)) as an “effectful morphism”
for the effect represented by the monad M - as in our previous examples over Set —
this means we have a general well-behaved notion of “effectful composition”. Now,
let us see another remarkable property of Kleisli categories.

(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 9 5

Theorem. Let (M, u,n) be an internal monoid in [C,C]. Then we have an adjunction
L - R inducing the monad (M, u, n), where

A— A A— M(A)
fEC(AaB)’_)nBOf hECJW(AvB)Hp’BOM(f)

Anintuition is that L includes “pure” morphisms into “effectful” morphisms, by
postcomposing with 1 which sends pure values to computations that return them.
Corollary. The internal monoids in [C, C] are exactly the monads induced by adjunctions.

Thus, we just call monad this concept that admits two equivalent definitions.?

Proof of the theorem. First, we need to check that L and R are functors.
For f € C(A,B)and g € C(B, (),
L(g) <=<L(f) = pc e M(nc o g) onp o f
= (po o M(nc)) o (M(g) onp) o f
(unit law + naturality of) = idycyoncogo f
=L(gof)

Similarly we can check that R(¢’) o R(f’) = R(¢’ <=< f), and that L and R preserve
identities. For the adjunction, note that

Cu(L(A), B) = C(A, M(B)) = C(A, R(B))
and, for f € C(A’, A) and g € Cy;(B, B’), we have
Cu(L(f),9) = (h € C(A, M(B)) = g<=<ho f) = C(f, R(g))
so we have an equality of functors (i.e. equality on both objects and morphisms)
Cur(L(=), =) = C(— R(=))
and two equal functors are naturally isomorphic by a family of identity morphisms.
The unit of the adjunction is the image of the identity for L(A) in Cy, via the natural
bijection... but this identity in Ca is 4 and the bijection sends it to itself.

Finally, the counitis e = idp;(a) € C(R(A), R(A)) = Cp(L(R(A)), A), therefore
R(ercay) = R(ea) = pa o M(idpr(ay) = pa: the induced monad is (M, ,n). O

3The internal monoid definition explains this meme: https://stackoverflow.com/questions/
3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem

https://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
https://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem

	Monads

