
(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
LECTURE 9

10 OCTOBER 2024 — L. T. D. NGUYỄN

Last time: adjoint functors; preservation of (co)products.

Proof that right adjoints preserve products. LetL a RwithR : C → D. Let (B, (πi)i∈I)
be a product of (Ai)i∈I in C. Recall (from Lecture 7 on representable functors) that
this is equivalent to having a natural bijection

C(−, B) ∼=
∏
i∈I

C(−, Ai)

that maps idB to (πi)i∈I , which implies that it maps any f to (πi ◦ f)i∈I . We have:

D(−, R(B)) ∼= C(L(−), B) ∼=
∏
i∈I

C(L(−), Ai) ∼=
∏
i∈I

D(−, R(Ai))

This shows thatR(B) is a product of (R(Ai))i∈I , for a family of projectionswhich
is the image of idR(B) by this natural bijection (obtained by composition), that is:(

(θX,Ai
◦ (πi ◦ −) ◦ θ−1

R(B),B)(idR(B))
)
i∈I

To simplify this expression and conclude, it suffices to observe that, by naturality,
we have θX,Ai

◦ (πi ◦ −︸ ︷︷ ︸
C(L(X),πi)

) = (R(πi) ◦ −︸ ︷︷ ︸
D(X,R(πi))

) ◦ θX,Ai
. □

MONADS

Definition. Consider an adjunction C D

L

R

⊣ with unit η and counit ε.

The monad induced by this adjunction is (M,µ, η) where

M = R ◦ L µ = R(εL) = (R(ε))L (cf. Lecture 6)

Thus M : C → C is an endofunctor, η : IdC ⇒M and

µ : R ◦ (L ◦R) ◦ L⇒ R ◦ L i.e. µ : M ◦M ⇒M

We call η the unit of the monad, and µ its multiplication.

Note that the types of η and µ only refer to M , not to L and R separately. This
will allow us to give later a direct definition of monads of the form “these diagrams
involving η and µ must commute”.

First, we look at monads on Set.
List monad: From the free/forgetful adjunction (−)∗ a U we get a monad

(List, η, µ) where ηX(x) = [x] and µ “flattens” lists of lists:

µX : List(List(X))→ List(X)

[ℓ1, . . . , ℓn] 7→ ℓ1 · . . . · ℓn
1



2 10 OCTOBER 2024 — L. T. D. NGUYỄN

State monad: From the adjunction (−) × S a Set(S,−) we get a monad
(StateS , η, µ) where StateS(X) = Set(S, X ×A) and

ηX : X → Set(S, X × S)

x 7→ (s 7→ (x, s)) (cf. Lecture 8)
µX : Set(S, Set(S, X × S)× S)→ Set(S, X × S)

m 7→ (s 7→ εX×S(m(s)))

where εY : (f, s′) 7→ f(s′) for g : S → Y and s′ ∈ S.
The surprising thing is that monads on Set can represent computational effects.1

Definition (“bind” operator). Let (M,µ, η) be a monad with M : Set → Set. Let
m ∈M(X) and f : X →M(Y ). We set m >>= f = µY (M(f)(m)).

For the list monad, this is the concat_map function in OCaml:
[x1, . . . , xn] >>= f = f(x1) · . . . · f(xn)

For example [1, 2] >>=(x 7→ [0, 3x]) = [0, 3, 0, 6]. We can also chain >>=:
[1, 2] >>=(x 7→ [0, 3x] >>=(y 7→ [x+ y])) = [1, 4, 2, 8]

If we consider a list as an (ordered2) nondeterministic superposition then the above
can be seen, informally, as the semantics of a nondeterministic program:

x← choose [1, 2]; y ← choose [0, 3x]; return (x+ y)

With this point of view, η(z) = [z] is the deterministic choice of the “pure value” z.
The state monad corresponds to having a mutable global variable, let’s call it v:

m ∈ StateS(X) ⇐⇒ m :

old value of v︷︸︸︷
S → X︸︷︷︸

return value

×
new value of v︷︸︸︷
S

ηX(x) : s 7→ (x, s) is a computation that returns x without changing the state, and
m >>= f =

[
s 7→ let (x, s′) = m(s) in f(x)(s′)

]
So we can represent the semantics of x← v; v := x+ 1; return x (for S = N) as

get >>=(x 7→ put(x+ 1) >>=(y 7→ η(x))) = (s 7→ (s, s+ 1))

where get : S → S × S put : S → Set(S, {∗} × S)

s 7→ (s, s) s 7→
[
s′ 7→ (∗, s)

]
(these translations between imperative programs and chains of >>= correspond
roughly to Haskell’s “do-notation”).

Let us mention yet another example of cultural interest: the continuation monad
below models effects that act on the control flow, such as call/cc.

Set(Set(−, A), A) coming from Setop Set

Set(−,A)

[Set(−,A)]op

⊣

Given two functions f : X → M(Y ) and g : Y → M(Z), there is now an obvious
way to “plug them together”: define

f >=> g = (x 7→ f(x) >>= g)

1A fewbibliographic references aboutmonads in programmingwere given in the notes for Lecture 1.
2To represent nondeterminism without order and multiplicity one can use the covariant powerset

monad instead; see the coalgebra course (CR17).



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 9 3

For example, (y 7→ [1 + y, 2]) >=>(x 7→ [0, 3x]) = (y 7→ [0, 3 + 3y, 0, 6]). Intuitively,
this is a kind of “composition of functions with effects” – here, the effect is a sort
of non-determinism. This new operator generalizes to arbitrary categories:

Definition. Let C be a category, M : C → C and µ : M ◦M ⇒ M . We define the
Kleisli composition of g ∈ C(B,M(C)) and f ∈ C(A,M(B)) as

g <=< f = µC ◦M(g) ◦ f

Proposition. When C = Set, this general definition of Kleisli composition agrees with
the set-specific one (using >>=): g <=< f = f >=> g.

Proof idea. Just unfold the definitions. □

Since we have a composition operation, we’d like to use to build a category. But
to do so, we’d need to check that, for example, Kleisli composition is associative,
that is, (h <=< g) <=< f = h <=<(g <=< f). The conditions that make this work are
summed up in the following definition.

Definition. An internal monoid in [C, C] is a 3-tuple (M,µ, η) where:
• M is an endofunctor of C
• µ : M ◦M ⇒M and η : IdC ⇒M are natural transformations
• µ satisfies the associativity law: the diagram below commutes

M ◦M ◦M M ◦M

M ◦M M

M(µ)

µ

µM

µ

• µ and η satisfy the unit laws: the diagram below commutes

M M ◦M M

M

M(η)

µ

ηM

idM idM

(this is equivalent to asking the left triangle and the right triangle to com-
mute separately – each triangle corresponds to one of the two unit laws).

Remark. Recall that the notation [C, C] stands for the category of functors C → C
(with natural transformations as morphisms). Let us justify the name “internal
monoid” by analogy. By formally replacing ([C, C], ◦, IdC) with (Set,×, {∗}), we
may define an internal monoid in Set as a set M with µ : M ×M → M (so µ is a
binary operation on M) and ê : {∗} →M , where the “associativity law” becomes

M ×M ×M M ×M

M ×M M

µ×idM

idM×µ µ

µ

stating that µ is associative, while the unit laws become the fact that ê(∗) is a unit
for µ. So an internal monoid in Set is a monoid in the usual sense!

This analogy will be made technically rigorous in Olivier Laurent’s part of the
course using the notion of internal monoid in a monoidal category.

Proposition. Every monad on C induced by an adjunction is an internal monoid in [C, C].



4 10 OCTOBER 2024 — L. T. D. NGUYỄN

Proof. Let L a R an adjunction inducing a monad (M,µ, η).
If we expand the definitions M = R ◦ L and µ = R(εL) in the associativity

diagram, we see that it is the image by R(−)L of

L ◦R ◦ L ◦R L ◦R

L ◦R IdD

εL◦R

L◦R(ε) ε

ε

This commutes by naturality of ε. In fact, it corresponds to the equality of the two
ways of computing the horizontal composition ε⊛ ε (cf. Lecture 6):

D D D

L◦R

IdD

L◦R

IdD

ε ε

Thus, µ ◦ µM = R(ε⊛ ε)L = µ ◦M(µ).
As for the unit laws, they are consequences of the triangle identities relating the

unit and the counit of the adjunction that induces ourmonad. For instance the unit
law involvingM(η) is the image by R of

L ◦R ◦ L L

L

εL

L(η)
idL

(this diagram has been copy-pasted from the previous lecture; to match it with the
left triangle in the unit laws above, rotate it 90° clockwise…). □

Theorem. Given an internal monoid (M,µ, η) in [C, C], the following data indeed defines
a category, called the Kleisli category CM ofM :

• the objects of CM are the same as of C
• CM (A,B) = C(A,M(B)) for any two objects A and B
• composition is the Kleisli composition <=<
• the identity for A in CM (A,A) = C(A,M(A)) is ηA

Proof. For f ∈ CM (A,B) = C(A,M(B)), g ∈ C(B,M(C)) and h ∈ C(C,M(D)),

(h <=< g) <=< f = µD ◦M(µD ◦M(h) ◦ g) ◦ f
= µD ◦M(µD) ◦M(M(h)) ◦M(g) ◦ f

(associativity law) = µD ◦ µM(D) ◦M(M(h)) ◦M(g) ◦ f
(naturality of µ) = µD ◦M(h) ◦ µC ◦M(g) ◦ f

= h <=<(g <=< f)

One can also show that f <=< ηA = ηB <=< f = f for f ∈ C(A,M(B)) thanks to the
unit laws concerning µ and η. □

If we see a morphism f ∈ CM (A,B) = C(A,M(B)) as an “effectful morphism”
for the effect represented by themonadM – as in our previous examples over Set –
thismeanswe have a general well-behaved notion of “effectful composition”. Now,
let us see another remarkable property of Kleisli categories.



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 9 5

Theorem. Let (M,µ, η) be an internal monoid in [C, C]. Then we have an adjunction
L a R inducing the monad (M,µ, η), where

L : C → CM R : CM → C
A 7→ A A 7→M(A)

f ∈ C(A,B) 7→ ηB ◦ f h ∈ CM (A,B) 7→ µB ◦M(f)

An intuition is thatL includes “pure”morphisms into “effectful”morphisms, by
postcomposing with η which sends pure values to computations that return them.
Corollary. The internal monoids in [C, C] are exactly the monads induced by adjunctions.

Thus, we just call monad this concept that admits two equivalent definitions.3

Proof of the theorem. First, we need to check that L and R are functors.
For f ∈ C(A,B) and g ∈ C(B,C),

L(g) <=<L(f) = µC ◦M(ηC ◦ g) ◦ ηB ◦ f
= (µC ◦M(ηC)) ◦ (M(g) ◦ ηB) ◦ f

(unit law+ naturality of η) = idM(C) ◦ ηC ◦ g ◦ f
= L(g ◦ f)

Similarly we can check thatR(g′)◦R(f ′) = R(g′ <=< f ′), and that L andR preserve
identities. For the adjunction, note that

CM (L(A), B) = C(A,M(B)) = C(A,R(B))

and, for f ∈ C(A′, A) and g ∈ CM (B,B′), we have
CM (L(f), g) = (h ∈ C(A,M(B)) 7→ g <=<h ◦ f) = C(f,R(g))

so we have an equality of functors (i.e. equality on both objects and morphisms)
CM (L(−),−) = C(−, R(−))

and two equal functors are naturally isomorphic by a family of identitymorphisms.
The unit of the adjunction is the image of the identity forL(A) in CM via the natural
bijection… but this identity in CM is ηA and the bijection sends it to itself.

Finally, the counit is εA = idM(A) ∈ C(R(A), R(A)) = CM (L(R(A)), A), therefore
R(εL(A)) = R(εA) = µA ◦M(idM(A)) = µA: the induced monad is (M,µ, η). □

3The internal monoid definition explains this meme: https://stackoverflow.com/questions/
3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem

https://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
https://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem

	Monads

