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Last time: we defined an adjunction L a R, also denoted by

C D

R (right adjoint)

L (left adjoint)
⊣

when one of the three equivalent conditions below is satisfied:
• (when C and D are locally small) there is a natural isomorphism

Dop × C Set

C(L(−),−)

D(−,R(−))

θ

— to be explicit, the naturality square is:

C(L(X), A) D(X,R(A))

C(L(Y ), B) D(Y,R(B))

θX,A

g◦(−)◦L(f) R(g)◦(−)◦f

θY,B

• there is a natural transformation η : IdD ⇒ R ◦L, called the unit, such that
(L(X), ηX) is a universal morphism from X to R for every X ∈ ob(D)
• there is a natural transformation ε : L ◦ R ⇒ IdC , called the counit, such

that (R(A), εA) is a universal morphism from L to A for every A ∈ ob(C)
The proof of equivalence went through the presentation of universal morphisms
using representable functors.
Remark. We admit that the last 2 conditions are equivalent evenwhen C andD are
not locally small.
Remark. L a R ⇐⇒ Rop a Lop.

We also saw a bijective correspondence between the data θ, η, ε:
ηX = θX,L(X)(idL(X)) θX,A(f) = R(f) ◦ ηX
εA = θ−1

R(A),A(idR(A)) θ−1
X,A(g) = εA ◦ L(g)

The remarkable fact here is that either η or ε suffice to determine θ. The equations
themselves can be guessed as “the only things that make sense given the types”.

Examples:
Free/forgetful adjunction betweenMon and Set: Wehave already seen that

(−)∗ a U with the unit and the natural bijection
ηX(x) = [x] θX,M (h) = (x 7→ h([x]))
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We can also derive the counit εM ∈Mon(U(M)∗,M) as the only solution
to idM = (m 7→ εM ([m])), i.e. ∀m ∈M, εM ([m]) = m. Thus:

εM : M∗ →M

[m1, . . . ,mn] 7→ m1 · . . . ·mn

This is a variant of the “fold” combinators in functional programming (in
Haskell, εM is called mconcat).

We then know that (U(M), εM ) is a universal morphism from (−)∗ to
M , that is:

M M∗ M

X X∗

εM

∃!f f∗

h homomorphism

Trivial preorder: Let Upo : PreOrd→ Set be the forgetful functor.
For X ∈ ob(Set), let Triv(X) = (X,⩽triv) where x ⩽triv y is always

true. We have seen (cf. Homework 1) that (Triv(X), idX) is a universal
morphism from Upo toX . Therefore Triv has a unique extension to a func-
tor Set → PreOrd (as expected, Triv(f) = f) that makes id a natural
transformation Upo ◦ Triv⇒ IdSet, the counit of the adjunction Upo a Triv.
• the natural bijection Set(X,Y ) → PreOrd((X,⩽), (Y,⩽triv)) sends

a function to itself — indeed, the domain and codomain are equal!
• the unit is (idSetX )(X,⩽)∈ob(PreOrd) : IdPreOrd ⇒ Triv ◦Upo, this means

that the identity map is always monotone from (X,⩽) to (X,⩽triv).
Discrete preorder (i.e. equality): Disc(X) = (X,=) is left adjoint to Upo and

the unit, counit andnatural bijection are composed of identitymaps, thanks
to the equality PreOrd((X,=), (Y,⩽)) = Set(X,Y ). To sum up:

PreOrd SetUpo

Triv

Disc

⊣
⊣

Products: In a cartesian category, ∆ a (− & −) with the counit given by
the projections: (π1, π2) : ∆ ◦ (− & −) ⇒ IdC×C . The natural bijection
C(X,A) × C(X,B) ∼= C(X, A & B) is the pairing function. Therefore, the
unit is δ : IdC ⇒ (− & −) ◦ ∆ whose components are diagonal morphisms
δA = 〈idA, idA〉 ∈ C(A, A&A); the associated universal property is

X X &X

A&B

δA

f
∃!(g&h)

Coproducts: In a cocartesian category, (− ⊕ −) a ∆. with the unit (ι1, ι2)
given by the coprojections. The counit consists of codiagonal morphisms
from A⊕A to A.
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Product/function adjunction in Set: We have
partial application of product bifunctor︷ ︸︸ ︷

(−)×A a Set(A,−) for any
set A. (This example is of major importance: it presents the structure of
cartesian closed category on Set.)

Let us start with the natural bijection, which is curryfication:

Set(X ×A, Y ) ∼= Set(X, Set(A, Y ))

f 7→
[
x 7→ (a 7→ f(x, a))

][
(x, a) 7→ g(x)(a)

]
← [ g

By taking f = idX×A we get the unit ηX : x 7→ (a 7→ (x, a)). By taking
g = idSet(A,Y ) we get the counit εY : (h, a) 7→ h(a) — this evaluation map
has the universal property:

Set(A, Y ) Set(A, Y )×A Y

X X ×A

εY

∃!g g×idA

f

Contravariant hom-functors in Set are self-adjoint: We have:

Set(X, Set(Y,A)) ∼= Set(X × Y, A)

∼= Set(Y ×X, A)

∼= Set(Y, Set(X,A)) = Setop(Set(X,A), Y )

naturally inX and Y . This is a composition of natural isomorphism, where
the step in the middle is realized by the isomorphism Set(σY,X , A) for
σY,X ∈ IsoSet(Y ×X, X × Y ). Therefore:

Setop Set

Set(−,A)

[Set(−,A)]op

⊣

As a non-example, U : Mon → Set has no right adjoint (even though it has the left
adjoint (−)∗) — we will be able to give a proof later.

We can also determine the counit from the unit and vice versa directly, without
going through the natural bijection:

Proposition. Given the unit η of an adjunction L a R, the counit ε is determined as the
unique family of morphisms that makes this diagram commute:

R R ◦ L ◦R

R

ηR

idR

R(ε)

Proof (in the locally small case). Let θ be the natural bijection for this adjunction: we
must have θX,A(f) = R(f) ◦ ηX . At the same time εA = θ−1

R(A),A(idR(A)). Therefore
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we have R(εA) ◦ ηR(A) = idR(A).

R(A) R(L(R(A)))

R(A)

ηR(A)

idR(A)

R(εA)

This is exactly the above diagram, applied to an arbitrary A ∈ ob(C). It uniquely
determines εA because, since η is the unit of the adjunction, (L(R(A)), ηR(A)) is a
universal morphism from R(A) to R. □

There is also a counit-to-unit version, stated below.

Remark. These two commutative diagrams involving the unit and counit are called
the triangle identities.

Proposition. Given the counit ε of an adjunction L a R, the unit η is determined as the
unique family of morphisms that makes this diagram commute:

L ◦R ◦ L L

L

εL

L(η)
idL

Proof. Similar to the previous proof. □

Theorem. Conversely, if η : IdD ⇒ R ◦ L and ε : L ◦ R ⇒ IdC satisfy the triangle
identities, then they are the unit and counit of an adjunction L a R.

Proof idea (locally small case). Use the definitions of θX,A in terms of η and θ−1
X,A in

terms of ε, and show that they are natural and mutually inverse. □

Let us establish a few more properties of adjunctions.

Proposition (Adjoints are unique up to natural isomorphism). If L,L′ : D → C are
left adjoints to F : C → D, then L ∼= L′. The analogous property holds for right adjoints.

Proof. We use the uniqueness up to (unique) iso of universal morphisms to build
a family α = (αX ∈ IsoC(L(X), L′(X)))X∈ob(C). Then we need to show that α is
natural. Consider the following:

L(X) L′(X) F (L(X)) F (L′(X))

X

Y

L(Y ) L′(Y ) F (L(Y )) F (L′(Y ))

αX

L(f)
h

L′(f)

F (αX)

F (L(f)) F (L′(f))

ηX η′
X

f

ηY η′
Y

αY F (αY )

Exercise: meditate on this diagram to finish the proof (what property uniquely
characterises h?). □
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Proposition (Composition of adjunctions). If L a R and L′ a R′ with compatible
types (cf. below), then L ◦ L′ a R′ ◦R.

if C D E

R

L

R′

L′

⊣ ⊣ then C E

R′◦R

L◦L′

⊣

Proof. C(L(L′(X)), A) ∼= D(L′(X), R(A)) ∼= E(X,R′(R′(A))) naturally in A and X .
More precisely:

Dop × C Set

C(L(−),−)

D(−,R(−))

θ iso. therefore Eop × C Set

C(L(L′(−)),−)

D(L′(−),R(−))

θL′op×IdC
iso.

realizes the first natural isomorphism, and similarly for the second one. □
Finally we show that adjoints interact nicely with (co)products.

Definition. A functor F : C → D preserves products if, whenever (C, (πi)i∈I) is a
product of (Ai)i∈I in C, then (F (C), (F (πi))i∈I) is a product of (F (Ai))i∈I .

“F preserves coproducts” is defined analogously.
Theorem. If a functor F is a right adjoint, then it preserves products.

Dually, if a functor F is a left adjoint, then it preserves coproducts.
Remark. Beware: to be a right adjoint is to have a left adjoint.

There are many examples, let’s talk about them before proving the theorem:
• The forgetful U : Mon → Set is right adjoint to (−)∗. Therefore, it must

preserve products: U(M &M ′) ∼= U(M)×U(M ′). That is indeed the case:
a product of twomonoids inMon is built from a× of their sets of elements
(so this ∼= is a = for the canonical cartesian structure on Mon).
• Since (−)∗ is a left adjoint, (A+ B)∗ is a coproduct of A∗ and B∗ in Mon,

as claimed in Lecture 5. For instance {a}∗ ⊕ {b}∗ ∼= {a, b}∗.
• A singleton monoid S is initial in Mon, but U(S) 6= ∅ is not initial in Set.

Therefore U does not preserve 0-ary coproducts, so it is not a left adjoint /
does not have a right adjoint!
• The forgetful Upo : PreOrd → Set is both a right adjoint (to the trivial

preorder) and a left adjoint (to the discrete preorder). This is consistent
with the fact that products of preorders can be built using products of sets,
and coproducts of preorders can also be built using coproducts of sets.
• From the adjunction (−)×A a Set(A,−), we get

– Set(A,B × C) ∼= Set(A,B) × Set(A,C) (also a consequence of the
characterisation of products using representable functors)

– (B+C)×A ∼= (B×A)+(C×A) – so even though this distributivity law
of products over coproducts does not work in arbitrary categories, it
has a categorical explanation in Set! (And in other cartesian closed
categories, see Olivier Laurent’s part of the course.)

These examples can also be stated for arbitrary families, e.g.(∑
i∈I

Xi

)
×A ∼=

∑
i∈I

Xi ×Ai


