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Last time: natural transformations, natural isomorphisms.

Remark. We write F ∼= G to say that they two functors F,G : C → D are naturally
isomorphic (indeed this is an isomorphism of objects in the category [C,D]).

REPRESENTABLE FUNCTORS
In short: representable functors are those naturally isomorphic to a hom-functor.

Definition. Let C be a locally small category and F : C → Set be a functor.
A representation of F is a pair (A, θ) where A ∈ ob(C) and θ : C(A,−) ⇒ F is a

natural isomorphism. If F admits a representation, it is said to be representable.

• Here is an example first alluded to in Lecture 3. Consider the endofunctor
on Set of pairs X 7→ X2, also definable as

Set

Set2 Set

[product bifunctor for (Set,×,{∗})] (−×−) Pair

∆ [diagonal functor]

It is represented by ({1, 2}, θ) where
θX : Set({1, 2}, X)→ X2

f 7→ (f(1), f(2))

Indeed, we can check that this defines a natural transformation:

f (f(1), f(2))

g ◦ f (g(f(1)), g(f(2)))

Set({1,2},g) Pair(g)

and since each θX is also bijective, θ is a natural isomorphism.
• The contravariant powerset functor P : Setop → Set (Lecture 4) is also
representable — the following family of bijections is natural in X :

Setop({yes, no}, X) = Set(X, {yes, no})→ P(X)

f 7→ f−1({yes})

(the converse maps a subset of X to its indicator function).
• The forgetful functorU : Mon→ Set is represented by ((N,+, 0), θ)where

θ(M,·,e) : Mon((N,+, 0), (M, ·, e))→M

h 7→ h(1)

(n 7→
n times︷ ︸︸ ︷

x · . . . · x is the unique homomorphism N→M that maps 1 to x).
1
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Representable functors are important because they can be used to present universal
properties, as the following theorem shows.

Theorem. Let C and D be locally small categories.
An object A ∈ ob(C) is part of a universal morphism fromX ∈ ob(D) to F : C → D if

and only if C(A,−) ∼= D(X,F (−)) = D(X,−) ◦ F .
More precisely, there is an explicit bijection:

{representations of D(X,F (−))} ∼= {universal morphisms from X to F}
(A, θ) 7→ (A, θA(idA))(

A,

[
θB : C(A,B)→ D(X,F (B))

f 7→ F (f) ◦ φ

])
← [ (A,φ)

Thus, for the forgetful functor U : Mon→ Set, we have a natural bijection in M

Mon(X∗,M) ∼= Set(X,U(M)) = MX

h 7→ (x 7→ h([x]))

and in particularMon({a}∗,M) ∼= Set({a}, U(M)) ∼= U(M)naturally inM . (Since
{a}∗ ∼= M , this is consistent with our previous representation of U .)

As another example, let us take the diagonal functor∆: C → C × C. We have:

A is a coproduct of B and C ⇐⇒ C(A,−) ∼= C(B,−)× C(C,−)︸ ︷︷ ︸
= (C×C)((B,C),∆(−))

We can get the natural bijection from the coprojections:

θX : C(A,X)→ C(B,X)× C(C,X)

h 7→ (h ◦ ι1, h ◦ ι2)

and in the converse direction (ι1, ι2) = θA(idA). The bijectivity of θX is precisely
the universal property of the coproduct! And its inverse is the copairing map.

∃!h : θX(h) = (f, g) ⇐⇒

X

B A C

f

ι1

∃!h
g

ι2

Now let us prove the theorem in general.

Representation 7→ universal morphism. Let θ : C(A,−) ⇒ D(X,F (−)) be a natural
isomorphism. We want to show the following universal property:

X F (A) A

F (B) B

θA(idA)

f
F (h) ∃!h

We have a single morphism in C involved in the above diagram, and we know that
θ is a natural transformation between functors from C, so it seems reasonable to
consider the naturality square for this morphism (below, left). We then apply it to
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idA (below, right) — note that the reason it makes sense to work with “elements”
in this commutative diagram is that it “lives” in the category Set!

C(A,A) D(X,F (A))

C(A,B) D(X,F (B))

θA

C(A,h) D(X,F (h))

θB

idA θA(idA)

F (h) ◦ θA(idA)

h ◦ idA θB(h)

θA

C(A,h)

D(X,F (h))

θB

Thanks to this equality, the universal property that we want can be rephrased as
∀B ∈ ob(D), ∀f ∈ D(X,F (B)), ∃!h ∈ C(A,B) : θB(h) = f

which is true because each θB is a bijection. □

Universal morphism 7→ representation. For (A,φ) a universalmorphism fromX toF ,
θB : C(A,B)→ D(X,F (B))

f 7→ F (f) ◦ φ

is bijective for all B because this is precisely the universal property satisfied by
(A,φ), as illustrated by the case of coproducts above.

We still need to check naturality, i.e. that for every morphism g ∈ C(B,C), the
corresponding naturality square commutes. Since it is in Set, it suffices to check
that it commutes for every input element f ∈ C(A,B).

C(A,B) D(X,F (B))

C(A,C) D(X,F (C))

θB

C(A,g) D(X,F (g))

θC

f F (f) ◦ φ

F (g) ◦ F (f) ◦ φ

g ◦ f F (g ◦ f) ◦ φ

θB

C(A,g)

D(X,F (g))

θC

Since F is a functor, F (g ◦ f) = F (g) ◦ F (f) so the diagram commutes. □

These are inverse bijections. In one direction, F (idA)◦φ = φ. In the other, it has been
established previously that F (h) ◦ θA(idA) = θB(h). □

We also have a dual version with D(F (−), X) = D(−, X) ◦ F op : Cop → Set.

Theorem. There is an explicit bijection:
{representations of D(F (−), X)} ∼= {universal morphisms from F to X}

(A, θ) 7→ (A, θA(idA))(
A,

[
θB : C(B,A)→ D(F (B), X)

f 7→ φ ◦ F (f)

])
← [ (A,φ)

For example, (C, π1, π2) is a product of A and B if and only if the following
natural transformation in X is bijective:

C(X,C)→ C(X,A)× C(X,B)

f 7→ (π1 ◦ f, π2 ◦ f)

In a category representing a preordered set, this means that c is an infimum of a
and b if and only if ∀x, x ⩽ c ⇐⇒ x ⩽ a and x ⩽ b.
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ADJOINT FUNCTORS
Idea: global solutions to universal properties yield functors, generalizing

choice of binary products ⇝ bifunctor (−&−)
Theorem. Let F : C → D be a functor and for each X ∈ ob(D), let (L(X), ηX) be a
chosen universal morphism from X to F .

There is a unique extension of this operationL : ob(C)→ ob(D) to a functorL : C → D
such that (ηX ∈ C(X,F (L(X)))X∈ob(C) is a natural transformation η : IdD ⇒ F ◦ L.
Proof. Let f ∈ C(X,Y ). By the universal property of (L(X), ηX), there is a unique
way to define L(f) that makes the naturality square commute— see the upper half
of the diagram below:

X F (L(X)) L(X)

Y F (L(Y )) L(Y )

Z F (L(Z)) L(Z)

ηX

f F (L(f)) L(f)

ηY

g F (L(g)) L(g)

ηZ

In the lower half we have put the definition of L(g); our goal in doing so is to show
that L is a functor. Since the squares commute, the big rectangle commutes. By
functoriality of F we have

X F (L(X)) L(X)

Z F (L(Z)) L(Z)

ηX

g◦f F (L(g)◦L(f)) L(g)◦L(f)

ηZ

This commutative diagram is the one that defines L(g ◦ f); by uniqueness in the
universal property of (L(X), ηX), we get L(g◦f) = L(g)◦L(f). One can also check
that L(idX) = idL(X). □
Definition. In this situation, the functor L is said to be (a) left adjoint to F and η is
called the unit of the adjunction.

For example the free monoid functor (−)∗ : Set → Mon is left adjoint to the
forgetful functor U : Mon→ Set because x ∈ X 7→ [x] ∈ U(X∗) is natural in X .

The point of view of representable functors is:
Proposition. Let C andD be locally small categories. The functorL : D → C is left adjoint
to F : C → D if and only if C(L(A), X) ∼= D(A,F (X)) naturally in A and X :

Dop × C Set

C(L(−),−)= C(−,−)◦(Lop×IdC)

D(−,F (−))

θ iso

Proof idea. Via the characterisation of universal morphisms by representable func-
tors, L is left adjoint to F if and only if, for each X ∈ ob(C), there is a natural iso

(θX,A)A∈ob(C) : C(L(X),−)⇒ D(X,R(−))
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such that η = (θX,L(X)(idL(X))) is a natural transformation IdD ⇒ F ◦L. Therefore
the equivalence that we want to show is: given these θX,A that are natural in A,

θ is also natural in X ⇐⇒ η is natural
In the direction ( =⇒ ), we have: for any f ∈ D(X,Y ),

ηY ◦ f = θY,L(Y )(idL(Y )) ◦ f
= D(f, L(F (Y )))(θY,L(Y )(idL(Y )))

= θX,L(Y )(C(L(f), F (Y ))(idL(Y ))) by naturality
= θX,L(Y )(idL(Y ) ◦ L(f))
= F (L(f)) ◦ ηX

where the last step uses the formula for θX,A in terms of F and ηX that we have
seen earlier (this formula is a consequence of naturality in A).

The converse is left as an exercise. □
Of course, for a functor F ′ : C′ → D′, by applying the previous theorems to Gop

we get the dual statements:
• a choice (R(A), εA) of universal morphisms from F ′ to each A ∈ ob(D′)
extends uniquely to a functorR : D′ → C′ making ε : F ′ ◦R⇒ IdD′ natural

– R is then called a right adjoint to F ′

– and ε the counit of the adjunction
• a functor R is right adjoint to F if and only if C′(X,R(A)) ∼= D′(F ′(X), A)
naturally in X and A.

The key observation is to compare the characterisations of left and right adjoints
based on natural bijections. By taking L = F ′ and R = F , we see that1:
Corollary. L is left adjoint to R if and only if R is right adjoint to L.

This is a non-trivial coincidence: in the definition of “L is left adjoint to R” via
universal morphisms, the two functors play highly asymmetric roles (R specifies a
“problem” and L gives a “solution”), so there is no obvious reason that dualizing
this definition via (−)op would amount to the same thing as swapping the roles of
L and R!
Definition. In this situation, we say that “L and R are adjoint” and write L a R.

1For locally small categories, but we admit this is true in general.
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