(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 6

30 SEPTEMBER 2024 — L. T. D. NGUYỄN

Last time: a cartesian category $(C, \&, \top)$ is a category C equipped with a choice of binary products and of a terminal object. We saw that '&' is associative, commutative and unital up to isomorphism, and can be used to construct *n*-ary products. Now, let us show that it is *functorial*.

Definition. Let $(C, \& , \top)$ be a cartesian category, $A, B, C, D \in ob(\mathcal{C})$, $f \in \mathcal{C}(A, C)$ and $g \in \mathcal{C}(B, D)$. We define $f \& g \in \mathcal{C}(A \& B, C \& D)$ as $\langle f \circ \pi_1^{A, B}, g \circ \pi_2^{A, B} \rangle$.

$$
\begin{array}{ccc}A & \xleftarrow{\pi^{A,B}_1} & A\ \&\ B & \xrightarrow{\pi^{A,B}_2} & B \\ \downarrow & & \downarrow\qquad\qquad\downarrow\\ C & \xleftarrow{\tau^{C,D}_1} & C\ \&\ D & \xrightarrow{\pi^{C,D}_2} & D\end{array}
$$

Proposition. *This defines a bifunctor* $(- \& -) : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ *.*

Proof. id_{*A*} & id_{*B*} = id_{*A*&*B*} is immediate from uniqueness in the universal property of the product *A* & *B*. For composition, we look at this diagram, which commutes because its upper and lower halves commute:

$$
A \xleftarrow{\pi_1^{A,B}} A \& B \xrightarrow{\pi_2^{A,B}} B
$$
\n
$$
f_1 \downarrow \qquad f_1 \& g_1 \downarrow \qquad g_1
$$
\n
$$
C \xleftarrow{\pi_1^{C,D}} C \& D \xrightarrow{\pi_2^{C,D}} D
$$
\n
$$
f_2 \downarrow \qquad f_2 \& g_2 \downarrow \qquad g_2
$$
\n
$$
E \xleftarrow{\pi_1^{E,F}} E \& F \xrightarrow{\pi_2^{E,F}} F
$$

Forgetting the middle line, we get

$$
A \xleftarrow{\pi_1^{A,B}} A \& B \xrightarrow{\pi_2^{A,B}} B
$$

\n
$$
f_2 \circ f_2 \downarrow \qquad (f_2 \& g_2) \circ (f_1 \& g_1)
$$

\n
$$
E \xleftarrow{\pi_1^{E,F}} E \& F \xrightarrow{\pi_2^{E,F}} F
$$

By definition, $(f_2 \circ f_1) \& (g_2 \circ g_1)$ is the only morphism from *A* & *B* to *C* & *D* that makes the diagram commute, so

$$
(f_2 \circ f_1) \& (g_2 \circ g_1) = (f_2 \& g_2) \circ (f_1 \& g_1)
$$

1

which means that $(- \& -)$ preserves composition. □

NATURAL TRANSFORMATIONS

Motivation: in a cartesian category $(C, \&, \top)$, we have families of morphisms $\pi_1^{A,B} \in \mathcal{C}(A \& B, A)$, $\sigma_{A,B} \in \mathcal{C}(A \& B, B \& A)$, … which are "generic" / "uniformly defined" over all objects *A, B*. Thanks to this, they satisfy some compatibility condition with the bifunctor (*−* & *−*).

Definition. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{C} \to \mathcal{D}$ be functors. A *natural transformation* from *F* to *G* is a family $\alpha = (\alpha_A \in \mathcal{D}(F(A), G(A)))_{A \in \text{ob}(C)}$ such that for any $A, B \in \text{ob}(C)$ and $f \in \mathcal{C}(A, B)$, the following diagram ("naturality square") commutes:

$$
F(A) \xrightarrow{\alpha_A} G(A)
$$

\n
$$
F(f) \downarrow G(f)
$$

\ni.e. $\alpha_B \circ F(f) = G(f) \circ \alpha_A$
\n
$$
F(B) \xrightarrow{\alpha_B} G(B)
$$

We write α : $F \Rightarrow G$, or in a diagram:

For example $(\pi_1^{A,B})_{A,B\in\mathrm{ob}(\mathcal{C})}$ defines a natural transformation $\pi_1\colon (-\&-)\Rightarrow \Pi_1$

where
$$
\Pi_1: C \times C \rightarrow C
$$

\n $(A, B) \mapsto A$
\n $(f, g) \mapsto f$

Proof. The left half of the diagram defining $f \& g$ is a naturality square for $\pi_1! \square$

To avoid explicitly writing the bifunctors, we also say that

 ${}^{\prime\prime}\pi_1^{A,B} \in \mathcal{C}(A \& B, A)$ is *natural in A and B*".

Other examples include *polymorphic* functions between generic data structures that are represented as endofunctors on **Set**. (For more on the connection between polymorphism and naturality, cf. [Wad89, HRR13].) For instance:

$$
\begin{array}{c}\n\texttt{head}_{A} \colon \texttt{List}(A) \to \texttt{Option}(A) \\
\qquad \qquad [] \mapsto \texttt{None} \\
\qquad [a_1, \dots, a_n] \mapsto \texttt{Some}(a_1) \text{ for } n \geqslant 1\n\end{array}
$$

defines a natural transformation **Set Set**

$$
\overbrace{\underbrace{\begin{array}{c}\text{list} \\ \text{head}\end{array}}_{\text{Option}}}\hspace{1.5em}\textbf{Set}~.
$$

Proof. For $f: A \rightarrow B$, we can check the naturality square by case analysis:

$$
\begin{array}{ccc}\n\begin{bmatrix}\n\end{bmatrix}\n\downarrow\text{head}_{A}\n\end{array}\n\longrightarrow \text{None} & [a_1, \ldots, a_n] \longmapsto \text{some}(a_1)
$$
\n
$$
\begin{bmatrix}\n\end{bmatrix}\n\downarrow\text{Option}(f) & \text{List}(f)\n\end{array}\n\begin{bmatrix}\n\end{bmatrix}\n\downarrow\text{Option}(f) & \text{List}(f)\n\end{bmatrix}\n\begin{array}{ccc}\n\text{Option}(f) & \text{Dist}(f(a_1), \ldots, f(a_n)] \longmapsto \text{Some}(f(a_1)) & \square\n\end{array}
$$

We can build new natural transformations out of new ones. A simple way is:

Definition. Let $F, G, H: \mathcal{C} \to \mathcal{D}$ be functors and $\alpha: F \Rightarrow G, \beta: G \Rightarrow H$ be natural transformations. We define $\beta \circ \alpha = (\beta_A \circ \alpha_A)_{A \in \text{ob}(\mathcal{C})}$.

This is called *vertical composition* because of the shape of this diagram:

To see that $\beta \circ \alpha$ is a natural transformation $F \Rightarrow H$, observe that in the commutative diagram below, the small squares commute by naturality of α and β , and the outer rectangle is the naturality condition for $\beta \circ \alpha$:

In equations: $\beta_B \circ \alpha_B \circ F(f) = \beta_B \circ G(f) \circ \alpha_A = H(f) \circ \beta_A \circ \alpha_A$.

We also have another kind of composition, but to define it, we first need to define how natural transformations can interact with functors.

Definition ("whiskering"¹). Let $F, G: \mathcal{C} \to \mathcal{D}$ be functors and $\alpha: F \Rightarrow G$.

- For *H* : $\mathcal{D} \to \mathcal{E}$, we define $H(\alpha) = (H(\alpha_A))_{A \in \text{ob}(\mathcal{C})}$: $H \circ F \Rightarrow H \circ G$.
- For $H' : \mathcal{E}' \to \mathcal{C}$, we define $\alpha_{H'} = (\alpha_{H'(X)})_{X \in ob(\mathcal{E}')} : F \circ H' \Rightarrow G \circ H'.$

$$
\mathcal{E}' \xrightarrow{H'} \mathcal{C} \xrightarrow{\begin{array}{c} F \\ \downarrow \alpha \end{array}} \mathcal{D} \xrightarrow{H} \mathcal{E}
$$

These are natural transformations because:

- The naturality squares for $H(\alpha)$ are images by H which, being a functor, preserves commutative diagrams — of those for *α*.
- The naturality squares for α_H are special cases of those for α .

Proposition. $H(\alpha_{H'}) = (H(\alpha))_{H'}$.

Proof. For all $X \in ob(\mathcal{E}')$, the *X*-components of the two natural transformations are both equal to $H(\alpha_{H'(X)})$ by definition.

Proposition. *Let α and β be natural transformations with the following types:*

Then $G'(\alpha) \circ \beta_F = \beta_G \circ F'(\alpha)$ *.*

¹This is the actual name: https://ncatlab.org/nlab/show/whiskering — comparing the shape of the diagram to a cat's whiskers is left to the reader's imagination.

This expresses the fact that the two obvious ways to put *α* and *β* together, illustrated respectively by the two diagrams below, coincide.

Proof. This equality corresponds to the diagram

which is a naturality square for β , and therefore commutes. \Box

Definition. We set $\beta \otimes \alpha = G'(\alpha) \circ \beta_F = \beta_G \circ F'(\alpha)$ and call it the *horizontal composition* of *α* and *β*.

Theorem (Interchange law). Let α , β , γ , δ *be natural transformations with the types:*

We have $(\beta \otimes \alpha) \circ (\delta \otimes \gamma) = (\delta \circ \beta) \otimes (\gamma \circ \alpha)$ *. In other words, the diagram describes only one natural transformation of type* $F' \circ F \Rightarrow G' \circ G$ *.*

Proof. Consider the following diagram:

The 4 small squares commute because they are naturality squares for either *β* or *δ*, as in the proof of the previous proposition. The small triangles commute by definition of ⊛. Therefore the whole diagram commutes.

Furthermore, by definition of $(\delta \circ \beta) \circledast (\gamma \circ \alpha)$ and functoriality of *F* and *H*, the following diagram also commutes:

Since the big squares of the two diagrams coincide, the natural transformations of type $F' \circ F \Rightarrow H' \circ H$ that they define are equal, giving us the equality we want. \Box

In the above proof, we have used commutative diagrams whose arrows denote natural transformations, where sequencing of arrows is vertical composition. Do these diagrams live in a category? Observe that all functors that appear in those diagrams have the same type $C \rightarrow \mathcal{E}$. notation already used for the collection of functors *C→D*

Definition. Let *C* and *D* be two categories. The *category of functors* $[\overline{C}, \overline{D}]$ has:

as objects: all functors $C \rightarrow D$ **as morphisms from** F **to** G **:** all natural transformations $F \Rightarrow G$ **as composition:** vertical composition

Note that vertical composition is associative because it is defined componentwise, and composition in $\mathcal C$ is associative. There are also identities: $\mathrm{id}_F = (\mathrm{id}_{F(A)})_{A\in\mathrm{ob}(\mathcal C)}$.

Since $[\mathcal{C}, \mathcal{D}]$ is a category, it makes sense to talk about its isomorphisms:

Definition. A *natural isomorphism* from *F* to *G* is an element of $\text{Iso}_{[C, D]}(F, G)$.

Before looking an example, let us establish a property that makes it easier to check that a family of morphisms is a natural isomorphism.

Proposition. Let $F, G: C \to \mathcal{D}$. If a natural transformation $\alpha: F \Rightarrow G$ is such that α_A *is an isomorphism for every* $A \in ob(\mathcal{C})$ *, then* α *is a natural isomorphism.*

Proof. For $f \in C(A, B)$, starting from the naturality of α , we have:

$$
\alpha_B \circ F(f) = G(f) \circ \alpha_A
$$

\n
$$
\alpha_B^{-1} \circ \alpha_B \circ F(f) \circ \alpha_A^{-1} = \alpha_B^{-1} \circ G(f) \circ \alpha_A \circ \alpha_A^{-1}
$$

\n
$$
F(f) \circ \alpha_A^{-1} = \alpha_B^{-1} \circ G(f)
$$

and the last equation says that $\alpha^{-1} = (\alpha_A^{-1})_{A \in \mathcal{C}}$ is a natural transformation. We can check that α^{-1} is an inverse to α in $[\mathcal{C}, \mathcal{D}]$ (by computing $\alpha \circ \alpha^{-1}$ and $\alpha^{-1} \circ \alpha$ componentwise). Therefore, $\alpha \in \text{Iso}_{[\mathcal{C},\mathcal{D}]}(F,G)$.

As an example, the isomorphisms $\sigma_{A,B} \in \mathcal{C}(A \& B, B \& A)$ that we defined in the previous lecture are also natural in *A* and *B* (exercise). Therefore, they form a natural isomorphism from $(- \& -)$ to $(- \& -) \circ$ Flip where Flip: $C \times C \rightarrow C \times C$ maps (A, B) to (B, A) and (f, g) to (g, f) .

REFERENCES

- [HRR13] Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. Logical Relations and Parametricity – A Reynolds Programme for Category Theory and Programming Languages. In John Power and Cai Wingfield, editors, *Proceedings of the Workshop on Algebra, Coalgebra and Topology, WACT 2013, Bath, UK, March 1, 2013*, volume 303 of *Electronic Notes in Theoretical Computer Science*, pages 149–180. Elsevier, 2013. doi:10.1016/j.entcs.2014.02.008.
- [Wad89] Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, *Proceedings of the fourth international conference on Functional programming languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989*, pages 347–359. ACM, 1989. doi:10.1145/99370.99404.