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Last time: a cartesian category (C,&,>) is a category C equipped with a choice
of binary products and of a terminal object. We saw that ‘&’ is associative, commu-
tative and unital up to isomorphism, and can be used to construct n-ary products.

Now, let us show that it is functorial.

Definition. Let (C,&,>) be a cartesian category, A,B,C,D ∈ ob(C), f ∈ C(A,C)

and g ∈ C(B,D). We define f & g ∈ C(A&B, C &D) as 〈f ◦ πA,B
1 , g ◦ πA,B

2 〉.

A A&B B

C C &D D

f

πA,B
1 πA,B

2

f&g g

πC,D
1 πC,D

2

Proposition. This defines a bifunctor (−&−) : C × C → C.

Proof. idA & idB = idA&B is immediate from uniqueness in the universal property
of the product A&B. For composition, we look at this diagram, which commutes
because its upper and lower halves commute:

A A&B B

C C &D D

E E & F F

f1

πA,B
1 πA,B

2

f1&g1 g1

f2

πC,D
1 πC,D

2

f2&g2 g2

πE,F
1 πE,F

2

Forgetting the middle line, we get

A A&B B

E E & F F

f2◦f2

πA,B
1 πA,B

2

(f2&g2)◦(f1&g1) g2◦g1

πE,F
1 πE,F

2

By definition, (f2 ◦ f1) & (g2 ◦ g1) is the only morphism from A&B to C &D that
makes the diagram commute, so

(f2 ◦ f1) & (g2 ◦ g1) = (f2 & g2) ◦ (f1 & g1)

which means that (−&−) preserves composition. □
1
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NATURAL TRANSFORMATIONS
Motivation: in a cartesian category (C,&,>), we have families of morphisms

πA,B
1 ∈ C(A&B, A), σA,B ∈ C(A&B, B&A), … which are “generic” / “uniformly

defined” over all objects A,B. Thanks to this, they satisfy some compatibility con-
dition with the bifunctor (−&−).
Definition. LetF : C → D andG : C → D be functors. A natural transformation from
F toG is a family α = (αA ∈ D(F (A), G(A)))A∈ob(C) such that for anyA,B ∈ ob(C)
and f ∈ C(A,B), the following diagram (“naturality square”) commutes:

F (A) G(A)

F (B) G(B)

αA

F (f) G(f)

αB

i.e. αB ◦ F (f) = G(f) ◦ αA

We write α : F ⇒ G, or in a diagram:

C D

F

G

α

For example (πA,B
1 )A,B∈ob(C) defines a natural transformation π1 : (−&−) ⇒ Π1

where Π1 : C × C → C
(A,B) 7→ A

(f, g) 7→ f

Proof. The left half of the diagram defining f & g is a naturality square for π1! □
To avoid explicitly writing the bifunctors, we also say that

“πA,B
1 ∈ C(A&B, A) is natural in A and B”.

Other examples include polymorphic functions between generic data structures that
are represented as endofunctors on Set. (For more on the connection between
polymorphism and naturality, cf. [Wad89, HRR13].) For instance:

headA : List(A) → Option(A)

[] 7→ None

[a1, . . . , an] 7→ Some(a1) for n ⩾ 1

defines a natural transformation Set Set

List

Option

head .

Proof. For f : A → B, we can check the naturality square by case analysis:

[] None [a1, . . . , an] Some(a1)

[] None [f(a1), . . . , f(an)] Some(f(a1)) □

headA

List(f) Option(f)

headA

List(f) Option(f)

headB headB

We can build new natural transformations out of new ones. A simple way is:
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Definition. Let F,G,H : C → D be functors and α : F ⇒ G, β : G ⇒ H be natural
transformations. We define β ◦ α = (βA ◦ αA)A∈ob(C).

This is called vertical composition because of the shape of this diagram:

C DG

F

H

α

β

To see that β ◦ α is a natural transformation F ⇒ H , observe that in the com-
mutative diagram below, the small squares commute by naturality of α and β, and
the outer rectangle is the naturality condition for β ◦ α:

F (A) G(A) H(A)

F (B) G(B) H(B)

αA βA

αB βB

In equations: βB ◦ αB ◦ F (f) = βB ◦G(f) ◦ αA = H(f) ◦ βA ◦ αA.
We also have another kind of composition, but to define it, we first need to define

how natural transformations can interact with functors.

Definition (“whiskering”1). Let F,G : C → D be functors and α : F ⇒ G.
• For H : D → E , we define H(α) = (H(αA))A∈ob(C) : H ◦ F ⇒ H ◦G.
• For H ′ : E ′ → C, we define αH′ = (αH′(X))X∈ob(E′) : F ◦H ′ ⇒ G ◦H ′.

E ′ C D EH′

G

F

H
α

These are natural transformations because:
• The naturality squares forH(α) are images byH —which, being a functor,

preserves commutative diagrams — of those for α.
• The naturality squares for αH are special cases of those for α.

Proposition. H(αH′) = (H(α))H′ .

Proof. For all X ∈ ob(E ′), the X-components of the two natural transformations
are both equal to H(αH′(X)) by definition. □

Proposition. Let α and β be natural transformations with the following types:

C D E

F

G

F ′

G′

α β

Then G′(α) ◦ βF = βG ◦ F ′(α).

1This is the actual name: https://ncatlab.org/nlab/show/whiskering — comparing the shape
of the diagram to a cat’s whiskers is left to the reader’s imagination.

https://ncatlab.org/nlab/show/whiskering


4 30 SEPTEMBER 2024 — L. T. D. NGUYỄN

This expresses the fact that the two obviousways to putα and β together, illustrated
respectively by the two diagrams below, coincide.

C D E

G

F

F ′

G′
α

β

C D E
G

F

F ′

G′

α

β

Proof. This equality corresponds to the diagram

F ′(F (A)) F ′(G(A))

G′(F (A)) G′(G(A))

F ′(αA)

βF (A) βG(A)

G′(αA)

which is a naturality square for β, and therefore commutes. □

Definition. We set β ⊛ α = G′(α) ◦ βF = βG ◦ F ′(α) and call it the horizontal
composition of α and β.

Theorem (Interchange law). Let α, β, γ, δ be natural transformations with the types:

C D EG

F

H

G′

H′

F ′

α

γ

β

δ

We have (β⊛α) ◦ (δ⊛ γ) = (δ ◦ β)⊛ (γ ◦α). In other words, the diagram describes only
one natural transformation of type F ′ ◦ F ⇒ G′ ◦G.

Proof. Consider the following diagram:

F ′ ◦ F F ′ ◦G F ′ ◦H

G′ ◦ F G′ ◦G G′ ◦H

H ′ ◦ F H ′ ◦G H ′ ◦H

F ′(α)

βF

β⊛α

F ′(γ)

βG βH

G′(α)

δF

G′(γ)

δG
δ⊛γ

δH

H′(α) H′(γ)

The 4 small squares commute because they are naturality squares for either β or
δ, as in the proof of the previous proposition. The small triangles commute by
definition of ⊛. Therefore the whole diagram commutes.
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Furthermore, by definition of (δ ◦ β)⊛ (γ ◦ α) and functoriality of F and H , the
following diagram also commutes:

F ′ ◦ F F ′ ◦G F ′ ◦H

G′ ◦ F G′ ◦H

H ′ ◦ F H ′ ◦G H ′ ◦H

F ′(α)

F ′(γ◦α)

βF

(δ◦β)F
(δ◦β)⊛(γ◦α)

F ′(γ)

βH

(δ◦β)G

δF δH

H′(α)

H′(γ◦α)

H′(γ)

Since the big squares of the two diagrams coincide, the natural transformations of
type F ′◦F ⇒ H ′◦H that they define are equal, giving us the equality wewant. □

In the above proof, we have used commutative diagrams whose arrows denote
natural transformations, where sequencing of arrows is vertical composition. Do
these diagrams live in a category? Observe that all functors that appear in those
diagrams have the same type C → E .

Definition. Let C and D be two categories. The category of functors
notation already used for the collection of functors C→D︷ ︸︸ ︷

[C,D] has:
as objects: all functors C → D
as morphisms from F to G: all natural transformations F ⇒ G
as composition: vertical composition

Note that vertical composition is associative because it is defined componentwise,
and composition in C is associative. There are also identities: idF = (idF (A))A∈ob(C).

Since [C,D] is a category, it makes sense to talk about its isomorphisms:

Definition. A natural isomorphism from F to G is an element of Iso[C,D](F,G).

Before looking an example, let us establish a property that makes it easier to
check that a family of morphisms is a natural isomorphism.

Proposition. Let F,G : C → D. If a natural transformation α : F ⇒ G is such that αA

is an isomorphism for every A ∈ ob(C), then α is a natural isomorphism.

Proof. For f ∈ C(A,B), starting from the naturality of α, we have:

αB ◦ F (f) = G(f) ◦ αA

α−1
B ◦ αB ◦ F (f) ◦ α−1

A = α−1
B ◦G(f) ◦ αA ◦ α−1

A

F (f) ◦ α−1
A = α−1

B ◦G(f)

and the last equation says that α−1 = (α−1
A )A∈C is a natural transformation. We

can check that α−1 is an inverse to α in [C,D] (by computing α ◦ α−1 and α−1 ◦ α
componentwise). Therefore, α ∈ Iso[C,D](F,G). □

As an example, the isomorphisms σA,B ∈ C(A & B, B & A) that we defined in
the previous lecture are also natural in A and B (exercise). Therefore, they form a
natural isomorphism from (− & −) to (− & −) ◦ Flip where Flip : C × C → C × C
maps (A,B) to (B,A) and (f, g) to (g, f).
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