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Last time: C is a coproduct of (Ai)i∈I in Cwith the coprojections ιi ∈ C(Ai, C)when:
∀X ∈ ob(C), ∀(fi ∈ C(Ai, X))i∈I , ∃!h ∈ C(C,X) : ∀i ∈ I, fi = h ◦ ιi

X

C

. . . Ai . . . Aj . . .

∃!h
fi

ιi

fj

ιj

In Set: Last time we mentioned that the disjoint sum of two sets is a binary
coproduct. More generally, a coproduct of a family (Ai)i∈I of sets is given
by the dependent sum

∑
i∈I Ai (as defined in the previous lecture) with

the coprojections ιi : a 7→ (i, a).
InRel: We can also build a coproduct using a dependent sum, with the re-

lational coprojections ιRel
i = {(a, (i, a)) | a ∈ Ai}.

In PreOrd and Ord: Aproduct of (Xi,⩽i) is given by
(∑

i∈I Xi, ⩽
)
where

ιi is the same as for Set and (i, x) ⩽ (j, y) ⇐⇒ i = j and x ⩽i y.
In C(X,⩽): Dually to “product = infimum” for categories representing pre-

orders, we have “coproduct = supremum”.
InMon: A family ofmonoids always admits a coproduct, but it has a slightly

complicated construction using alternating lists (called the “free product”
of monoids). However, the special case of free monoids is nice:

Proposition. (X+Y )∗ is a coproduct ofX∗ and Y ∗ with the coprojections ι∗1 and ι∗2 (i.e.
the images, by the free monoid functor, of the coprojections in Set).

This will be proved later — it is an instance of the fact that “left adjoints preserve
coproducts”.

Remark. Although we have only seen positive examples, (co)products do not al-
ways exist! As an example, consider the category C({a,b},=) induced by 2 elements
with the equality preorder. The two elements (objects) a and b do not have any
common lower bound, and therefore they have no infimum (product); nor do they
have a supremum (coproduct).

Remark. Unary (co)products always exist: (A, idA) is both the product and the
coproduct of the family (A).

As for 0-ary coproducts, they are of course dual to 0-ary products, i.e. terminal
objects.

Definition. An object C is initial in C if card(C(C,X)) = 1 for every X ∈ ob(C).

Proposition. Initial object in C = terminal object in Cop (and vice versa).
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In Set/Rel/PreOrd/Ord: The empty set is initial: for any set X there is a
unique function ∅ → X , namely the “empty function”. (In other words
X∅ is a singleton, just as x0 = 1 for a number x.)

InMon: Any singleton {x}, with the only possible monoid structure (that
is, x · x = x and e = x) is initial! That is because for any monoid M ,
since monoid homomorphisms preserve the unit, the unique morphism
in Mon({x},M) is h : x 7→ eM .

In C(X,⩽): initial object = minimum element.
Finally, here is a more “meta” example of initial object.

Proposition. Let X ∈ ob(D) and F : C → D a functor. Let X ↓ F be defined as:
• ob(X ↓ F ) = {(A,φ) | A ∈ ob(C), φ ∈ C(X,F (A))}
• (X ↓ F )

(
(A1, φ1), (A2, φ2)

)
= {f ∈ C(A1, A2) | F (f) ◦ φ1 = φ2}

A1 A2

F (A1) F (A2)

X

f

F (f)

φ1 φ2

• composition and identities are inherited from the category C
This is a category, whose initial objects are exactly the universal morphisms from X to F .

Proof. To check that it is a category we have to establish that composition is well-
defined. The idea is that if f ∈ C(A1, A2) and g ∈ C(A2, A3) make the suitable
triangles commute, then so does g ◦ f , i.e. F (g ◦ f) ◦ φ1 = φ3. This works because
the functor F preserves composition; the argument is summed up by the following
commutative diagram:

F (A1) F (A2) F (A3)

X

F (f)

F (g◦f)

φ1

F (g)

φ2
φ3

The claim about initial objects is immediate by unfolding the definitions (you are
highly encouraged to do this on a piece of paper!). □

Dually, universal morphisms from F to X can be described as terminal objects
in a certain category F ↓ X .

UNIQUENESS UP TO UNIQUE ISOMORPHISM
In the first lecture we claimed that universal properties characterise objects up

to isomorphism, with the example of the free monoid. We shall now see general
versions of this claim. In fact, an isomorphism is not just a property A ∼= B, but a
piece of data f ∈ IsoC(A,B), and we’ll see that the data itself can be forced to be
unique under some conditions!

Proposition. Between two initial objects I1 and I2 of a category C, there exists a unique
isomorphism.
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Proof. Since I1 is initial there is a morphism f ∈ C(I1, I2). Since I2 is initial there
is a morphism g ∈ C(I2, I1). They form a pair of inverse isomorphisms: indeed,
g ◦ f and idI1 are both in C(I1, I1) and I1 is initial, so, by uniqueness, g ◦ f = idI1 ;
similarly, f ◦ g = idI2 . Finally, f is unique again because I1 is initial. □

For other kinds of universal properties, the isomorphism is only unique when
subject to an extra condition.

Theorem. For any two universal morphisms (B1, φ1) and (B2, φ2) from X ∈ ob(D) to
F : C → D, there exists a unique f ∈ IsoC(B1, B2) such that φ2 = F (f) ◦ φ1.

F (B1) B1

X

F (B2) B2

F (f) ∃!f iso

φ1

φ2

Proof. Apply the previous proposition to X ↓ F . □

Alternative direct proof. There is a unique morphism f making this diagram com-
mute because (B1, φ1) is a universal morphism. To show that f ∈ IsoC(B1, B2),
one can adapt the proof for the free monoid (Lecture 1). □

By duality, terminal objects and universal morphisms from F to X are also
unique up to unique isomorphism.

Corollary. If (C, (πi)) and (C ′, (π′
i)) are two products of (Ai) then there exists a unique

isomorphism f ∈ C(C,C ′) such that ∀i ∈ I, π′
i ◦ f = πi.

Let us illustrate this with a commutative diagram for the binary case:

C C ′

A1 A2

∃!f iso

π1

π′
2π′

1

π2

Proof. Apply the previous theorem to the diagonal functor∆:

(C)i∈I C

(Ai)i∈I

(C ′)i∈I C ′

(πi)i∈I

(f)i∈I ∃!f iso

(π′
i)i∈I

and observe that, since composition is performed componentwise in CI , what the
diagram says is exactly that ∀i ∈ I, π′

i ◦ f = πi. □

Dually, coproducts are also unique up to unique isomorphism.
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CARTESIAN CATEGORIES
Suppose we have a category that “has all binary products”: any two objects

A,B ∈ ob(C) admit a product. We would like to refer to “the” product but there is
still some ambiguity even though it is only up to unique isomorphism. Hence:

Definition. A cartesian category (C,&,>) is a category C endowed with:
• a chosen product (A&B, πA,B

1 , πA,B
2 ) for any two objects A,B ∈ ob(C);

• a chosen terminal object >.

Examples include (Set,×, {∗}), (Mon,×, {∗}), (Rel,+,∅) and so on: in all our
previous examples of existence of products in various categories, we exhibited a
“standard” construction for the product.

As always, this definition can be dualised:

Definition. A cocartesian category (C,⊕, 0) is a category endowed with chosen co-
products (A⊕B, ιA,B

1 , ιA,B
2 ) and a chosen initial object 0.

Proposition. A cocartesian structure (⊕, 0) on C = a cartesian structure (&,>) on Cop.

Thismeans that any property concerning cartesian categories has a dual cocarte-
sian counterpart: just reverse the arrows! We only focus here on the cartesian case.

Remark. In the literature, the product operator in an arbitrary cartesian category
is often denoted by ×. We reserve this notation for the usual product of sets (or
sets with structure), and write & for an arbitrary product.

The notations &,>,⊕, 0 are taken from linear logic, in order to be consistent
with Olivier Laurent’s part of the course. In this context there are debatable but
sensible reasons to not write e.g. ⊥ for the chosen initial object. (J.-Y. Girard, who
introduced linear logic, has some comments in very bad taste about this debate on
notations in [Gir11, Section 9.2.3].)

Multiplying numbers is an associative and commutative operation, with a unit
element. For categorical products, we can hope for the same properties, but only
up to isomorphism.

Proposition. In a cartesian category,A&B ∼= B&A. In other words, “& is commutative
up to isomorphism”.

First “uninspired” proof to illustrate manipulating products. Let σA,B = 〈πA,B
2 , πA,B

1 〉
where 〈−,−〉 denotes the pairing for A&B.

A&B

B B &A A

πA,B
2 ∃!σA,B

πA,B
1

πB,A
1 πB,A

2

Let us show that σB,A ◦ σA,B = idA&B . We first determine πA,B
i ◦ σB,A ◦ σA,B for

i ∈ {1, 2}. For i = 1, we expand the definitions of σA,B and σB,A, and calculate:

πA,B
1 ◦ 〈πB,A

2 , πB,A
1 〉 ◦ 〈πA,B

2 , πA,B
1 〉 = πB,A

2 ◦ 〈πA,B
2 , πA,B

1 〉 = πA,B
1

using the computation rule for a product (which holds by definition of 〈−,−〉)
πi ◦ 〈f1, f2〉 = fi

Similarly we also have πA,B
2 ◦ σB,A ◦ σA,B = πA,B

2 . In fact, these two computations
can be read on the following diagram — it commutes because its upper half and
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lower half both commute by definition of σA,B and σB,A respectively:

A&B

B B &A A

A&B

πA,B
2 σA,B

πA,B
1

πA,B
2

πB,A
1 πB,A

2

σB,A

πA,B
1

The left and right halves of the diagram tell us the equalities that we just stated
concerning πA,B

i ◦ σB,A ◦ σA,B , for i = 2 and i = 1 respectively. Furthermore:

πA,B
2 ◦ idA&B = πA,B

2 πA,B
1 ◦ idA&B = πA,B

1

By uniqueness in the universal property of A&B, we have σB,A ◦ σA,B = idA&B .
Likewise, σA,B ◦ σB,A = idB&A. Hence σA,B ∈ IsoC(A&B, B &A). □

Second “clever” proof. First, observe that (C, π1, π2) is a product of A and B if and
only if (C, π2, π1) is a product of B and A (immediate by comparing the universal
properties defining both). Thus, in particular, (A&B, πA,B

2 , πA,B
1 ) is a product of

B and A. Since products are unique up to (unique) iso, A&B ∼= B &A. □

Proposition (Unitality up to iso). In a cartesian category, A&> ∼= A ∼= >&A.

Proof idea 1. Show that this diagram commutes

A&> A
id

π1

⟨idA,∗⟩

id

where ∗ is the unique morphism in C(A,>). □

Proof idea 2. We show that A is a product of A and >, and therefore isomorphic to
the chosen product A&>:

X

A A >

f
∃!h ∗

idA

∗

The left half of the diagram commutes if and only if h = f . The right half always
commutes: two morphisms from a common source to a common terminal object
are automatically equal. So there is indeed a unique solution for h. □

Proposition (Associativity up to iso). (A&B) & C ∼= A& (B & C).

(We skip the proof.) In fact, we can say more: (A&B)&C and A&(B&C) are
both products of the family {A,B,C} — cf. Exercise 1 in Homework 3.

So cartesian categories admit all ternary products — actually, they have all finite
products (again, we omit the proof):

Proposition. For all n ∈ N, A1 & · · ·&An is a product of (Ai)1⩽i⩽n.
(For n = 0: take the chosen terminal object >.)



6 26 SEPTEMBER 2024 — L. T. D. NGUYỄN

REFERENCES
[Gir11] Jean-Yves Girard. The Blind Spot: Lectures on logic. European Mathematical Society, September

2011. doi:10.4171/088.

https://doi.org/10.4171/088

	Uniqueness up to unique isomorphism
	Cartesian categories
	References

