(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 4

23 SEPTEMBER 2024 — L. T. D. NGUYỄN

Last time: duality and contravariant functors $F: C^{\text{op}} \to D$, which satisfy

$$F(g \circ_{\mathcal{C}} f) = F(f \circ_{\mathcal{C}^{\mathrm{op}}} g) = F(f) \circ_{\mathcal{D}} F(g)$$

e.g. the contravariant hom-functor $\mathcal{C}(-, X) \colon \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$ (for \mathcal{C} locally small).

$$\mathcal{C}(g \circ_{\mathcal{C}} f, X)(h) = h \circ g \circ f = \mathcal{C}(g, X)(h) \circ f = \mathcal{C}(f, X)(\mathcal{C}(g, X)(h))$$

Other *examples*:

Contravariant powerset functor:
$$\begin{cases} \mathbf{Set}^{\mathrm{op}} \to \mathbf{Set} \\ A \in \mathrm{ob}(\mathbf{Set}) \mapsto \mathcal{P}(A) \\ f \in \mathbf{Set}(A, B) \mapsto \begin{pmatrix} \mathcal{P}(B) \to \mathcal{P}(A) \\ X \mapsto f^{-1}(X) \end{pmatrix}$$

Indeed, we have

$$\forall f \colon A \to B, \, \forall g \colon B \to C, \forall X \subseteq C, \, (g \circ f)^{-1}(X) = f^{-1}(g^{-1}(X))$$

On monoids: For a monoid M, we have $(\mathcal{C}_M)^{\text{op}} = \mathcal{C}_{M^{\text{op}}}$ where M^{op} is a monoid with the same set of elements and the same unit element as M, and binary operation $x \cdot_{M^{\text{op}}} y = y \cdot_M x$. Therefore, a functor $(\mathcal{C}_M)^{\text{op}} \to \mathcal{C}_N$ is "the same thing" as an *anti-homomorphism*, i.e. a map $h: M \to N$ such that $h(x \cdot y) = h(y) \cdot h(x)$ — for example, reverse: $X^* \to X^*$.

that $h(x \cdot y) = h(y) \cdot h(x)$ — for example, reverse: $X^* \to X^*$. On preorders: $(\mathcal{C}_{(X,\leqslant)})^{\mathrm{op}} = \mathcal{C}_{(X,\gtrless)}$ so contravariant functors correspond to order-reversing maps (in French: "fonctions décroissantes").

We also introduced *bifunctors* $\widetilde{\mathcal{C} \times \mathcal{D}} \to \mathcal{E}$ last time. Set \times Set \to Set examples: $((A, B) \mapsto A \times B)$

Pairs:
$$\begin{cases} (a, b) \mapsto (a, b) \mapsto (f(a), g(b)) \\ (f, g) \mapsto ((a, b) \mapsto (f(a), g(b))) \\ \end{cases}$$

Disjoint sum:
$$\begin{cases} (A, B) \mapsto A + B = (\{1\} \times A) \cup (\{2\} \times B) \\ (f, g) \mapsto \begin{pmatrix} (1, a) \mapsto f(a) \\ (2, b) \mapsto g(b) \end{pmatrix} \end{cases}$$

Definition (Partial application of a bifunctor). Let $F : \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ be a bifunctor. Let $A \in ob(\mathcal{C})$ and $X \in ob(\mathcal{D})$. We write:

$$F(A, -): Y \in ob(\mathcal{D}) \mapsto F(A, Y) \in ob(\mathcal{E})$$

$$f \in \mathcal{D}(Y, Z) \mapsto F(A, f) = F(id_A, f) \in \mathcal{E}(F(A, Y), F(A, Z))$$

$$F(-, X): B \in ob(\mathcal{C}) \mapsto F(B, X) \in ob(\mathcal{E})$$

$$g \in \mathcal{C}(B, C) \mapsto F(g, X) = F(g, id_X) \in \mathcal{E}(F(B, X), F(C, X))$$

One can check that these are functors: $F(A, -) \in [\mathcal{D}, \mathcal{E}]$ and $F(-, X) \in [\mathcal{C}, \mathcal{E}]$. For example, both the covariant hom-functor $\mathcal{C}(A, -)$ and the contravariant hom-functor $\mathcal{C}(-, X)$ are partial applications of the hom-bifunctor $\mathcal{C}(-, -)$.

PRODUCTS AND COPRODUCTS

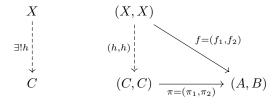
Idea: generalise the bifunctors \times and + on Set to other categories.

Definition. Let C be a category. We write $\Delta : C \to C \times C$ for its *diagonal functor*.

$$\Delta \colon A \in ob(\mathcal{C}) \mapsto (A, A)$$
$$f \in \mathcal{C}(A, B) \mapsto (f, f)$$

Let *A* and *B* be two objects of *C*. A *cartesian product* (or just *product*) of *A* and *B* is a universal morphism from Δ to $(A, B) \in ob(\mathcal{C} \times \mathcal{C})$.

(*Important:* for now we only speak of *a* product, not *the* product.)

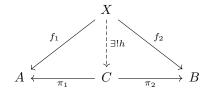


By definition, a universal morphism from Δ to (A, B) is pair (C, π) with $C \in ob(\mathcal{C})$ and $\pi \in (\mathcal{C} \times \mathcal{C})((C, C), (A, B))$ that satisfies the universal property of the above diagram (for all *X* and *f*, there exists a unique *h*...). We can write $f = (f_1, f_2)$ and $\pi = (\pi_1, \pi_2)$ because these are morphisms in the product category $\mathcal{C} \times \mathcal{C}$. Then:

$$f = \pi \circ (h, h) \quad \iff \quad f_1 = \pi_1 \circ h \text{ and } f_2 = \pi_2 \circ h$$

Therefore we can rephrase the definition more concretely: (C, π_1, π_2) is a product of *A* and *B* if and only if

for all $X \in ob(\mathcal{C})$, $f_1 \in \mathcal{C}(X, A)$ and $f_2 \in \mathcal{C}(X, B)$, there exists a unique $h \in \mathcal{C}(X, C)$ making the diagram below commute:



Definition. In this case π_1 and π_2 are called the *projections* of this product; we also say that "*C* is a product of *A* and *B* with the projections π_1, π_2 ". We call *h* the *pairing* of f_1 and f_2 — notation: $h = \langle f_1, f_2 \rangle$.

Important: strictly speaking the data of the product is the whole triple (C, π_1, π_2) ! Examples:

In Set: $(A \times B, \pi_1, \pi_2)$ is a cartesian product of A and B with $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$. Indeed, for $f_1: X \to A$, $f_2: X \to B$ and $h: X \to A \times B$, there is a unique $h = \langle f_1, f_2 \rangle$ that satisfies:

 $f_1 = \pi_1 \circ h$ and $f_2 = \pi_2 \circ h$ i.e. $\forall x \in C, h(x) = (f_1(x), f_2(x))$

In Rel: $A+B = \{1\} \times A \cup \{2\} \times B$ is a product of *A* and *B* with the projections

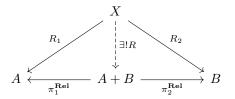
$$\begin{aligned} \pi_1^{\mathbf{Rel}} &= \{ ((1,a),a) \mid a \in A \} \in \mathbf{Rel}(A+B,A) \\ \pi_2^{\mathbf{Rel}} &= \{ ((2,b),b) \mid b \in B \} \in \mathbf{Rel}(A+B,B) \end{aligned}$$

because $R_1 = \pi_1^{\mathbf{Rel}} \circ R$ and $R_2 = \pi_2^{\mathbf{Rel}} \circ R$ if and only if

$$R = \{ (x, (1, a)) \mid (x, a) \in R_1 \} \cup \{ (x, (2, b)) \mid (x, b) \in R_2 \}$$

2

so this is the definition of the pairing $\langle R_1, R_2 \rangle$ of two relations.

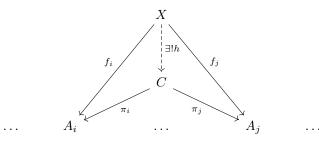


We can generalize products to an arbitrary family of objects — the previous case corresponds to a family of 2 objects.

Definition. Let *I* be a set and $(A_i)_{i \in I} \in ob(\mathcal{C})^I$. A *product* $(C, (\pi_i)_{i \in I})$ of this family of objects consists of $C \in ob(\mathcal{C})$ and $\pi_i \in \mathcal{C}(C, A_i)$ for $i \in I$ that satisfy the following equivalent conditions:

abstract: $(C, (\pi_i)_{i \in I})$ is a universal morphism from $\Delta \colon C \to C^I$ to $(A_i)_{i \in I}$ (where the power category C^I and the diagonal functor Δ are the expected generalisations of the binary case seen previously)

concrete: For every object *X* of *C* and family of morphisms $(f_i \in C(X, A_i))_{i \in I}$, there exists a unique $h \in C(X, C)$ such that $\pi_i \circ h = f_i$ for every $i \in I$.



The former examples generalize: in Set, the usual product $\prod_{i \in I} A_i$ of sets is a product of $(A_i)_{i \in I}$ with the projections π_i = "select the *i*-th coordinate" for $i \in I$; in **Rel**, a product of $(A_i)_{i \in I}$ is given by the *dependent sum*

$$\sum_{i \in I} A_i = \{(i, a) \mid i \in I, a \in A_i\}$$

with the projections $\pi_i = \{((i, a), a) \mid a \in A_i\}$. Other examples include:

In Mon: If $(M_i)_{i \in I}$ is a family of monoids, the product $\prod_{i \in I} M_i$ of their underlying sets endowed with the monoid structure

$$(m_i)_{i\in I} \cdot (n_i)_{i\in I} = (m_i \cdot n_i)_{i\in I} \qquad e_{\prod_{i\in I} M_i} = (e_{M_i})_{i\in I}$$

is a product of this family in **Mon**, with the same projections as in **Set** (with this monoid structure, the maps π_i are monoid homomorphisms). **In PreOrd and Ord:** Similarly to what happens with monoids, a product of

 $((X_i, \leq_i))_{i \in I}$ is given by $(\prod_i X_i, \leq)$ for a certain (pre)order \leq , namely:

$$(x_i)_{i \in I} \leqslant (y_i)_{i \in I} \quad \Longleftrightarrow \quad \forall i \in I, \ x_i \leqslant_i y_i$$

- In $\mathcal{C}_{(X,\leqslant)}$ for a preordered set (X,\leqslant) : In this category there is at most one morphism of each "type" (source object + target object) so the commutativity of the diagram is irrelevant. What's important is the *existence* of morphisms: recall that $\mathcal{C}_{(X,\leqslant)}(x,y) \neq \emptyset$ if and only if $x \leqslant y$. When *c* is the product of $(a_i)_{i \in I} \in X^I$, the diagram tells us that:
 - $\forall i \in I, c \leq a_i$ in other words, *c* is a lower bound of $\{a_i \mid i \in I\}$
 - any other lower bound *x* is below *c*.

Thus, *c* is a product of $(a_i)_{i \in I}$ if and only if it is a *greatest lower bound*, also called an *infimum*, of $\{a_i \mid i \in I\}$.

Remark. In a partially ordered set, the infimum is unique if it exists and one can write $c = \inf_{i \in I} a_i$. But in a preordered set this is not necessarily so: in \mathbb{Z} equipped with the divisibility preorder, -1 and 1 are both infima of the whole set \mathbb{Z} .

In the special case $I = \emptyset$, all the A_i and all morphisms pointing to them disappear, and the diagram becomes:

A product of the empty family is just an object *C* (there are no projections) such that: for all $X \in ob(\mathcal{C})$, there exists a unique $h \in \mathcal{C}(X, C)$... and that's it (there is no "such that", *h* is not required to make anything commute)! Thus, a 0-ary product is the same thing as a *terminal object*:

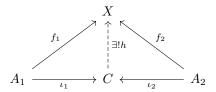
Definition. An object *C* is *terminal* in the category C when card(C(X, C)) = 1 for every $X \in ob(C)$.

- In Set, Mon and PreOrd: Singleton sets (equipped with the only possible structure) are terminal.
- In Rel: The empty set is terminal.
- In $\mathcal{C}_{(X,\leqslant)}$: Terminal objects are maximum elements of *X*.

(Indeed, an infimum of the empty subset is a maximum of the whole set!) Now, every definition in category theory comes with a *dual* when applied to the opposite category.

Definition. A *coproduct* of a family of objects $(A_i)_{i \in I}$ in \mathcal{C}^{op} is a product of this family in \mathcal{C}^{op} . Equivalently, it is a universal morphism from $(A_i)_{i \in I}$ to the diagonal functor $\Delta : \mathcal{C} \to \mathcal{C}^I$.

For binary coproducts $(I = \{1, 2\})$ the diagram is as follows — of course, it is the diagram of a product with the arrows reversed.



In Set, the disjoint sum $A_1 + A_2$ is a coproduct of A_1 and A_2 with

for
$$i \in \{1, 2\}$$
, $\iota_i \colon A_i \to A_1 + A_2$
 $a \mapsto (i, a)$

Indeed, the only map $h: A_1 + A_2 \rightarrow X$ that makes the diagram commute is

 $h: (i, a) \mapsto f_i(a)$