(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
LECTURE 4

23SEPTEMBER 2024 — L.T.D.NGUYEN

Last time: duality and contravariant functors F': C°? — D, which satisfy

F(goc f) = F(focor g) = F(f) op F(g)

e.g. the contravariant hom-functor C(—, X): C°? — Set (for C locally small).

Clgoc f, X)(h) = hogo f =C(g, X)(h) o f =C(f, X)(C(g, X)(h))
Other examples:
Set? — Set
A € ob(Set) — P(A)

P(B) — P(A) >
)

Contravariant powerset functor:

f € Set(A,B) — < Yo (X

Indeed, we have
Vf: A= B,Vg: B— CVX CC, (go f)""(X) = f"(¢7 (X))

On monoids: For a monoid M, we have (Cp;)°° = Cpror where M°P is a
monoid with the same set of elements and the same unit element as M,
and binary operation « - yror y = y -ar . Therefore, a functor (Casr)°® — Cn
is “the same thing” as an anti-homomorphism, i.e. a map h: M — N such
that A(x - y) = h(y) - h(z) — for example, reverse: X* — X*.

On preorders: (C(x «))°® = C(x,>) so contravariant functors correspond to
order-reversing maps (in French: “fonctions décroissantes”).

product of two categories
—~
We also introduced bifunctors C x D — £ last time. Set x Set — Set examples:
(A,B)— Ax B
Pairs:
(f,9) = ((a,0) = (f(a), (b))
(A,B)— A+ B= ({1} x A)U ({2} x B)

Disjoint sum: (L,a) = f(a)

(f,9) =

(2,0) = g(b)

Definition (Partial application of a bifunctor). Let F': C x D — & be a bifunctor.
Let A € ob(C) and X € ob(D). We write:

F(A,—): Y €ob(D)— F(A,Y) € ob(€)

)
feDY,2) = F(A, f) =F(ida, f) € E(F(AY), F(A, Z))
F(—,X): Beob(C)— F(B,X) € ob(€)
g €C(B,C) —~ F(g,X) = F(g,idx) € £(F(B, X), F(C, X))

One can check that these are functors: F(A,—) € [D,€] and F(—,X) € [C,&].
For example, both the covariant hom-functor C(A, —) and the contravariant hom-
functor C(—, X) are partial applications of the hom-bifunctor C(—, —).
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PropucTs AND COPRODUCTS
Idea: generalise the bifunctors x and + on Set to other categories.
Definition. Let C be a category. We write A: C — C x C for its diagonal functor.
A: Aecob(C)— (A,A)
JeCA,B) = (f.])

Let A and B be two objects of C. A cartesian product (or just product) of A and B is
a universal morphism from A to (A, B) € ob(C x C).

(Important: for now we only speak of a product, not the product.)

X (X, X)
3| (hh) | f=(fuf2)
C (C,C) ——— (A, B)

71':(71'1 77'I'2)

By definition, a universal morphism from A to (A, B) is pair (C, ) with C' € ob(C)
and 7 € (C x C)((C,C), (4, B)) that satisfies the universal property of the above
diagram (for all X and f, there exists a unique A ...). We can write f = (f1, f2) and
7 = (m1, m2) because these are morphisms in the product category C x C. Then:

f:’lTO(h,h) <~ flzwlohande:wQOh
Therefore we can rephrase the definition more concretely: (C, 71, 72) is a product
of A and B if and only if

forall X € ob(C), f1 € C(X, A) and f» € C(X, B), there exists a unique
h € C(X, C) making the diagram below commute:

X
/ | a;\
A — C - B

Definition. In this case 7; and 75 are called the projections of this product; we also
say that “C' is a product of A and B with the projections 7, m”. We call i the
pairing of f1 and fo — notation: h = (f1, f2).

Important: strictly speaking the data of the product is the whole triple (C, 7y, m2)!
Examples:

In Set: (A x B, m1, m2) is a cartesian product of A and B with m(a,b) = a
and ma(a,b) = b. Indeed, for f1: X — A, fo: X - Band h: X - A X B,
there is a unique h = (f1, f2) that satisfies:

fi=mohand fo =moh ie. VzeC, hi(z)=(f1(z), fo(x))
In Rel: A+B = {1} x AU{2} x Bisa product of A and B with the projections
e = {((1,a),a) | a € A} € Rel(A + B, A)
el = {((2,0),b) | b€ B} € Rel(A + B, B)
because R; = mR°l o R and Ry = 7&*°! o R if and only if

R = {(aj’ (1,@)) ‘ (x’a) € Rl} U {(3;‘, (2,b)) | (x’b) € R2}
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so this is the definition of the pairing (R1, R2) of two relations.

|

I

|
/ 13IR

|

\

A N A+ B T’ B
We can generalize products to an arbitrary family of objects — the previous case
corresponds to a family of 2 objects.

Definition. Let I beasetand (4;);c; € ob(C)!. A product (C, (m;)icr) of this family
of objects consists of C' € ob(C) and m; € C(C, A;) for i € I that satisfy the following
equivalent conditions:

abstract: (C, (7;);cr) is a universal morphism from A: C — C! to (A;)ier
(where the power category C! and the diagonal functor A are the expected
generalisations of the binary case seen previously)

concrete: For every object X of C and family of morphisms (f; € C(X, A;))icr,
there exists a unique h € C(X, C) such that m; o h = f; for every i € I.

X
En

C

The former examples generalize: in Set, the usual product [],.; A; of sets is a
product of (4;);er with the projections m; = “select the i-th coordinate” for i € I;
in Rel, a product of (4;);c is given by the dependent sum

Y Ai={(,a) i€l ac A}
iel
with the projections m; = {((¢,a),a) | a € A;}. Other examples include:

In Mon: If (M;);cs is a family of monoids, the product [[,.; M; of their un-

derlying sets endowed with the monoid structure

i€l

(mi)ier - (ni)ier = (M - 1i)ier €Ter Mi = (en; )ier

is a product of this family in Mon, with the same projections as in Set

(with this monoid structure, the maps m; are monoid homomorphisms).
In PreOrd and Ord: Similarly to what happens with monoids, a product of

((Xi,<4)),, is given by (T[; Xi, <) for a certain (pre)order <, namely:

( z)zEI (yz)zel — Vi e I Ty gz Yi

In C(x <) for a preordered set (X, <): In this category there is at most one
morphism of each “type” (source object + target object) so the commu-
tativity of the diagram is irrelevant. What’s important is the existence of
morphisms: recall that C(x <)(z,y) # @ if and only if z < 3. When c is the
product of (a;)ie; € X!, the diagram tells us that:

e Vi€ I, ¢ < a; — in other words, ¢ is a lower bound of {a; | i € I}
e any other lower bound « is below c.
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Thus, cis a product of (a;);cr if and only if it is a greatest lower bound, also
called an infimum, of {a; | i € I}.

Remark. In a partially ordered set, the infimum is unique if it exists and one can
write ¢ = inf;c; a;. But in a preordered set this is not necessarily so: in Z equipped
with the divisibility preorder, —1 and 1 are both infima of the whole set Z.

In the special case I = @, all the A; and all morphisms pointing to them disappear,
and the diagram becomes:

X

|
|
=i
|
!

v

C

A product of the empty family is just an object C' (there are no projections) such
that: for all X € ob(C), there exists a unique i € C(X, C)... and that’s it (there is no
“such that”, h is not required to make anything commute)! Thus, a 0-ary product
is the same thing as a terminal object:

Definition. An object C is terminal in the category C when card(C(X,C)) = 1 for
every X € ob(C).

In Set, Mon and PreOrd: Singleton sets (equipped with the only possible
structure) are terminal.
In Rel: The empty set is terminal.
In Cx <): Terminal objects are maximum elements of X.
(Indeed, an infimum of the empty subset is a maximum of the whole set!)
Now, every definition in category theory comes with a dual when applied to the
opposite category.

Definition. A coproduct of a family of objects (A;);er in C°P is a product of this
family in C°P. Equivalently, it is a universal morphism from (A;);c; to the diagonal
functor A: C — C'.

For binary coproducts (I = {1,2}) the diagram is as follows — of course, it is
the diagram of a product with the arrows reversed.

Ay C As

L1 L2

In Set, the disjoint sum A; + A, is a coproduct of 4; and A, with
fori e {1,2}, 2 A; = AL+ Ao
a— (i,a)
Indeed, the only map h: A; + A» — X that makes the diagram commute is
h: (i,a) = fi(a)
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