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Last time: duality and contravariant functors F : Cop → D, which satisfy

F (g ◦C f) = F (f ◦Cop g) = F (f) ◦D F (g)

e.g. the contravariant hom-functor C(−, X) : Cop → Set (for C locally small).

C(g ◦C f, X)(h) = h ◦ g ◦ f = C(g,X)(h) ◦ f = C(f,X)(C(g,X)(h))

Other examples:

Contravariant powerset functor:


Setop → Set

A ∈ ob(Set) 7→ P(A)

f ∈ Set(A,B) 7→

(
P(B) → P(A)

X 7→ f−1(X)

)
Indeed, we have

∀f : A → B, ∀g : B → C, ∀X ⊆ C, (g ◦ f)−1(X) = f−1(g−1(X))

On monoids: For a monoid M , we have (CM )op = CMop where Mop is a
monoid with the same set of elements and the same unit element as M ,
and binary operation x ·Mop y = y ·M x. Therefore, a functor (CM )op → CN
is “the same thing” as an anti-homomorphism, i.e. a map h : M → N such
that h(x · y) = h(y) · h(x) — for example, reverse : X∗ → X∗.

On preorders: (C(X,⩽))
op = C(X,⩾) so contravariant functors correspond to

order-reversing maps (in French: “fonctions décroissantes”).

We also introduced bifunctors
product of two categories︷ ︸︸ ︷

C × D → E last time. Set× Set → Set examples:

Pairs:
{
(A,B) 7→ A×B

(f, g) 7→
(
(a, b) 7→ (f(a), g(b))

)
Disjoint sum:


(A,B) 7→ A+B = ({1} ×A) ∪ ({2} ×B)

(f, g) 7→

(
(1, a) 7→ f(a)

(2, b) 7→ g(b)

)
Definition (Partial application of a bifunctor). Let F : C × D → E be a bifunctor.
Let A ∈ ob(C) and X ∈ ob(D). We write:

F (A,−) : Y ∈ ob(D) 7→ F (A, Y ) ∈ ob(E)
f ∈ D(Y, Z) 7→ F (A, f) = F (idA, f) ∈ E(F (A, Y ), F (A,Z))

F (−, X) : B ∈ ob(C) 7→ F (B,X) ∈ ob(E)
g ∈ C(B,C) 7→ F (g,X) = F (g, idX) ∈ E(F (B,X), F (C,X))

One can check that these are functors: F (A,−) ∈ [D, E ] and F (−, X) ∈ [C, E ].
For example, both the covariant hom-functor C(A,−) and the contravariant hom-
functor C(−, X) are partial applications of the hom-bifunctor C(−,−).
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PRODUCTS AND COPRODUCTS
Idea: generalise the bifunctors × and + on Set to other categories.

Definition. Let C be a category. We write ∆: C → C × C for its diagonal functor.
∆: A ∈ ob(C) 7→ (A,A)

f ∈ C(A,B) 7→ (f, f)

Let A and B be two objects of C. A cartesian product (or just product) of A and B is
a universal morphism from ∆ to (A,B) ∈ ob(C × C).

(Important: for now we only speak of a product, not the product.)

X (X,X)

C (C,C) (A,B)

∃!h (h,h)
f=(f1,f2)

π=(π1,π2)

By definition, a universal morphism from∆ to (A,B) is pair (C, π)with C ∈ ob(C)
and π ∈ (C × C)((C,C), (A,B)) that satisfies the universal property of the above
diagram (for allX and f , there exists a unique h…). We can write f = (f1, f2) and
π = (π1, π2) because these are morphisms in the product category C × C. Then:

f = π ◦ (h, h) ⇐⇒ f1 = π1 ◦ h and f2 = π2 ◦ h

Therefore we can rephrase the definition more concretely: (C, π1, π2) is a product
of A and B if and only if

for all X ∈ ob(C), f1 ∈ C(X,A) and f2 ∈ C(X,B), there exists a unique
h ∈ C(X,C) making the diagram below commute:

X

A C B

f1 ∃!h
f2

π1 π2

Definition. In this case π1 and π2 are called the projections of this product; we also
say that “C is a product of A and B with the projections π1, π2”. We call h the
pairing of f1 and f2 — notation: h = 〈f1, f2〉.

Important: strictly speaking the data of the product is the whole triple (C, π1, π2)!
Examples:

In Set: (A × B, π1, π2) is a cartesian product of A and B with π1(a, b) = a
and π2(a, b) = b. Indeed, for f1 : X → A, f2 : X → B and h : X → A × B,
there is a unique h = 〈f1, f2〉 that satisfies:

f1 = π1 ◦ h and f2 = π2 ◦ h i.e. ∀x ∈ C, h(x) = (f1(x), f2(x))

InRel: A+B = {1}×A∪{2}×B is a product ofA andBwith the projections

πRel
1 = {((1, a), a) | a ∈ A} ∈ Rel(A+B, A)

πRel
2 = {((2, b), b) | b ∈ B} ∈ Rel(A+B, B)

because R1 = πRel
1 ◦R and R2 = πRel

2 ◦R if and only if
R = {(x, (1, a)) | (x, a) ∈ R1} ∪ {(x, (2, b)) | (x, b) ∈ R2}
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so this is the definition of the pairing 〈R1, R2〉 of two relations.

X

A A+B B

R1 ∃!R
R2

πRel
1 πRel

2

We can generalize products to an arbitrary family of objects— the previous case
corresponds to a family of 2 objects.

Definition. Let I be a set and (Ai)i∈I ∈ ob(C)I . A product (C, (πi)i∈I) of this family
of objects consists ofC ∈ ob(C) and πi ∈ C(C,Ai) for i ∈ I that satisfy the following
equivalent conditions:

abstract: (C, (πi)i∈I) is a universal morphism from ∆: C → CI to (Ai)i∈I

(where the power category CI and the diagonal functor∆ are the expected
generalisations of the binary case seen previously)

concrete: For every objectX of C and family ofmorphisms (fi ∈ C(X,Ai))i∈I ,
there exists a unique h ∈ C(X,C) such that πi ◦ h = fi for every i ∈ I .

X

C

. . . Ai . . . Aj . . .

∃!h
fi fj

πi πj

The former examples generalize: in Set, the usual product
∏

i∈I Ai of sets is a
product of (Ai)i∈I with the projections πi = “select the i-th coordinate” for i ∈ I ;
inRel, a product of (Ai)i∈I is given by the dependent sum∑

i∈I

Ai = {(i, a) | i ∈ I, a ∈ Ai}

with the projections πi = {((i, a), a) | a ∈ Ai}. Other examples include:
InMon: If (Mi)i∈I is a family of monoids, the product

∏
i∈I Mi of their un-

derlying sets endowed with the monoid structure
(mi)i∈I · (ni)i∈I = (mi · ni)i∈I e∏

i∈I Mi
= (eMi

)i∈I

is a product of this family in Mon, with the same projections as in Set
(with this monoid structure, the maps πi are monoid homomorphisms).

In PreOrd and Ord: Similarly to what happens with monoids, a product of(
(Xi,⩽i)

)
i∈I

is given by
(∏

i Xi, ⩽
)
for a certain (pre)order ⩽, namely:

(xi)i∈I ⩽ (yi)i∈I ⇐⇒ ∀i ∈ I, xi ⩽i yi

In C(X,⩽) for a preordered set (X,⩽): In this category there is at most one
morphism of each “type” (source object + target object) so the commu-
tativity of the diagram is irrelevant. What’s important is the existence of
morphisms: recall that C(X,⩽)(x, y) 6= ∅ if and only if x ⩽ y. When c is the
product of (ai)i∈I ∈ XI , the diagram tells us that:

• ∀i ∈ I, c ⩽ ai — in other words, c is a lower bound of {ai | i ∈ I}
• any other lower bound x is below c.
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Thus, c is a product of (ai)i∈I if and only if it is a greatest lower bound, also
called an infimum, of {ai | i ∈ I}.

Remark. In a partially ordered set, the infimum is unique if it exists and one can
write c = infi∈I ai. But in a preordered set this is not necessarily so: in Z equipped
with the divisibility preorder, −1 and 1 are both infima of the whole set Z.
In the special case I = ∅, all theAi and all morphisms pointing to them disappear,
and the diagram becomes:

X

C

∃!h

A product of the empty family is just an object C (there are no projections) such
that: for allX ∈ ob(C), there exists a unique h ∈ C(X,C)… and that’s it (there is no
“such that”, h is not required to make anything commute)! Thus, a 0-ary product
is the same thing as a terminal object:
Definition. An object C is terminal in the category C when card(C(X,C)) = 1 for
every X ∈ ob(C).

In Set,Mon and PreOrd: Singleton sets (equipped with the only possible
structure) are terminal.

InRel: The empty set is terminal.
In C(X,⩽): Terminal objects are maximum elements of X .

(Indeed, an infimum of the empty subset is a maximum of the whole set!)
Now, every definition in category theory comes with a dualwhen applied to the

opposite category.
Definition. A coproduct of a family of objects (Ai)i∈I in Cop is a product of this
family in Cop. Equivalently, it is a universal morphism from (Ai)i∈I to the diagonal
functor∆: C → CI .

For binary coproducts (I = {1, 2}) the diagram is as follows — of course, it is
the diagram of a product with the arrows reversed.

X

A1 C A2

f1

ι1

∃!h
f2

ι2

In Set, the disjoint sum A1 +A2 is a coproduct of A1 and A2 with
for i ∈ {1, 2}, ιi : Ai → A1 +A2

a 7→ (i, a)

Indeed, the only map h : A1 +A2 → X that makes the diagram commute is
h : (i, a) 7→ fi(a)
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