(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 4

23 SEPTEMBER 2024 — L. T. D. NGUYỄN

Last time: duality and contravariant functors $F: \mathcal{C}^{op} \to \mathcal{D}$, which satisfy

$$
F(g \circ_{\mathcal{C}} f) = F(f \circ_{\mathcal{C}^{\mathrm{op}}} g) = F(f) \circ_{\mathcal{D}} F(g)
$$

e.g. the contravariant hom-functor $C(-, X)$: $C^{\rm op} \to \mathbf{Set}$ (for *C* locally small).

$$
\mathcal{C}(g \circ_{\mathcal{C}} f, X)(h) = h \circ g \circ f = \mathcal{C}(g, X)(h) \circ f = \mathcal{C}(f, X)(\mathcal{C}(g, X)(h))
$$

Other *examples*:

$$
\text{Contravariant powerset functor:} \begin{cases} \text{Set}^{\text{op}} \to \text{Set} \\ A \in \text{ob}(\text{Set}) \mapsto \mathcal{P}(A) \\ f \in \text{Set}(A, B) \mapsto \begin{pmatrix} \mathcal{P}(B) \to \mathcal{P}(A) \\ X \mapsto f^{-1}(X) \end{pmatrix} \end{cases}
$$

Indeed, we have

$$
\forall f \colon A \to B, \forall g \colon B \to C, \forall X \subseteq C, \ (g \circ f)^{-1}(X) = f^{-1}(g^{-1}(X))
$$

On monoids: For a monoid M, we have $(\mathcal{C}_M)^{op} = \mathcal{C}_{M^{op}}$ where M^{op} is a monoid with the same set of elements and the same unit element as *M*, and binary operation $x \cdot_{M^{\rm op}} y = y \cdot_M x$. Therefore, a functor $(\mathcal{C}_M)^{\rm op} \to \mathcal{C}_N$ is "the same thing" as an *anti-homomorphism*, i.e. a map $h: M \rightarrow N$ such that $h(x \cdot y) = h(y) \cdot h(x)$ — for example, reverse: $X^* \to X^*.$

On preorders: $(C_{(X,\leqslant)})^{\text{op}} = C_{(X,\geqslant)}$ so contravariant functors correspond to order-reversing maps (in French: "fonctions décroissantes").

product of two categories

We also introduced *bifunctors* $\widetilde{\mathcal{C}\times \mathcal{D}} \to \mathcal{E}$ last time. $\textbf{Set}\times \textbf{Set} \to \textbf{Set}$ examples: $($ $(A, B) \mapsto A \times B$

$$
\begin{aligned}\n\text{Pairs: } & \begin{cases} (A, B) \mapsto A \times B \\ (f, g) \mapsto ((a, b) \mapsto (f(a), g(b))) \end{cases} \\
\text{Disjoint sum: } & \begin{cases} (A, B) \mapsto A + B = (\{1\} \times A) \cup (\{2\} \times B) \\ (f, g) \mapsto \begin{pmatrix} (1, a) \mapsto f(a) \\ (2, b) \mapsto g(b) \end{pmatrix} \end{aligned}
$$

Definition (Partial application of a bifunctor). Let $F: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{E}$ be a bifunctor. Let *A* ∈ ob(*C*) and *X* ∈ ob(*D*). We write:

$$
F(A, -): Y \in ob(\mathcal{D}) \mapsto F(A, Y) \in ob(\mathcal{E})
$$

$$
f \in \mathcal{D}(Y, Z) \mapsto F(A, f) = F(\mathrm{id}_A, f) \in \mathcal{E}(F(A, Y), F(A, Z))
$$

$$
F(-, X): B \in ob(\mathcal{C}) \mapsto F(B, X) \in ob(\mathcal{E})
$$

$$
g \in \mathcal{C}(B, C) \mapsto F(g, X) = F(g, \mathrm{id}_X) \in \mathcal{E}(F(B, X), F(C, X))
$$

One can check that these are functors: $F(A, -) \in [\mathcal{D}, \mathcal{E}]$ and $F(-, X) \in [\mathcal{C}, \mathcal{E}].$ For example, both the covariant hom-functor $C(A, -)$ and the contravariant homfunctor *C*(*−, X*) are partial applications of the hom-bifunctor *C*(*−, −*).

PRODUCTS AND COPRODUCTS

Idea: generalise the bifunctors \times and $+$ on **Set** to other categories.

Definition. Let *C* be a category. We write $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ for its *diagonal functor*.

$$
\Delta: A \in ob(\mathcal{C}) \mapsto (A, A)
$$

$$
f \in \mathcal{C}(A, B) \mapsto (f, f)
$$

Let *A* and *B* be two objects of *C*. A *cartesian product* (or just *product*) of *A* and *B* is a universal morphism from Δ to $(A, B) \in ob(C \times C)$.

(*Important:* for now we only speak of *a* product, not *the* product.)

By definition, a universal morphism from Δ to (A, B) is pair (C, π) with $C \in ob(\mathcal{C})$ and $\pi \in (\mathcal{C} \times \mathcal{C})((C, C), (A, B))$ that satisfies the universal property of the above diagram (for all *X* and *f*, there exists a unique *h* ...). We can write $f = (f_1, f_2)$ and $\pi = (\pi_1, \pi_2)$ because these are morphisms in the product category $C \times C$. Then:

$$
f = \pi \circ (h, h)
$$
 \iff $f_1 = \pi_1 \circ h$ and $f_2 = \pi_2 \circ h$

Therefore we can rephrase the definition more concretely: (C, π_1, π_2) is a product of *A* and *B* if and only if

for all *X* \in ob(*C*), $f_1 \in C(X, A)$ and $f_2 \in C(X, B)$, there exists a unique $h \in \mathcal{C}(X, C)$ making the diagram below commute:

Definition. In this case π_1 and π_2 are called the *projections* of this product; we also say that "*C* is a product of *A* and *B* with the projections π_1, π_2 ". We call *h* the *pairing* of f_1 and f_2 — notation: $h = \langle f_1, f_2 \rangle$.

Important: strictly speaking the data of the product is the whole triple (C, π_1, π_2) ! Examples:

In Set: $(A \times B, \pi_1, \pi_2)$ is a cartesian product of *A* and *B* with $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$. Indeed, for $f_1 \colon X \to A$, $f_2 \colon X \to B$ and $h \colon X \to A \times B$, there is a unique $h = \langle f_1, f_2 \rangle$ that satisfies:

*f*₁ = *π*₁ \circ *h* and *f*₂ = *π*₂ \circ *h* i.e. $\forall x \in C$ *, h*(*x*) = (*f*₁(*x*)*, f*₂(*x*))

In Rel: $A+B = \{1\} \times A \cup \{2\} \times B$ is a product of *A* and *B* with the projections

$$
\pi_1^{\text{Rel}} = \{((1, a), a) \mid a \in A\} \in \text{Rel}(A + B, A)
$$

$$
\pi_2^{\text{Rel}} = \{((2, b), b) \mid b \in B\} \in \text{Rel}(A + B, B)
$$

because $R_1 = \pi_1^{\mathbf{Rel}} \circ R$ and $R_2 = \pi_2^{\mathbf{Rel}} \circ R$ if and only if

$$
R = \{(x, (1, a)) \mid (x, a) \in R_1\} \cup \{(x, (2, b)) \mid (x, b) \in R_2\}
$$

so this is the definition of the pairing $\langle R_1, R_2 \rangle$ of two relations.

We can generalize products to an arbitrary family of objects — the previous case corresponds to a family of 2 objects.

Definition. Let *I* be a set and $(A_i)_{i \in I} \in ob(\mathcal{C})^I$. A *product* $(C, (\pi_i)_{i \in I})$ of this family of objects consists of $C \in ob(\mathcal{C})$ and $\pi_i \in \mathcal{C}(C, A_i)$ for $i \in I$ that satisfy the following equivalent conditions:

abstract: $(C, (\pi_i)_{i \in I})$ is a universal morphism from $\Delta: C \to C^I$ to $(A_i)_{i \in I}$ (where the power category *C ^I* and the diagonal functor ∆ are the expected generalisations of the binary case seen previously)

concrete: For every object *X* of *C* and family of morphisms $(f_i \in C(X, A_i))_{i \in I}$, there exists a unique $h \in C(X, C)$ such that $\pi_i \circ \overline{h} = f_i$ for every $i \in I$.

The former examples generalize: in **Set**, the usual product $\prod_{i \in I} A_i$ of sets is a product of $(A_i)_{i \in I}$ with the projections π_i = "select the *i*-th coordinate" for $i \in I$; in **Rel**, a product of (*Ai*)*i∈^I* is given by the *dependent sum*

$$
\sum_{i \in I} A_i = \{(i, a) \mid i \in I, a \in A_i\}
$$

with the projections $\pi_i = \{((i, a), a) \mid a \in A_i\}$. Other examples include:

In Mon: If $(M_i)_{i \in I}$ is a family of monoids, the product $\prod_{i \in I} M_i$ of their underlying sets endowed with the monoid structure

$$
(m_i)_{i \in I} \cdot (n_i)_{i \in I} = (m_i \cdot n_i)_{i \in I} \qquad e_{\prod_{i \in I} M_i} = (e_{M_i})_{i \in I}
$$

is a product of this family in **Mon**, with the same projections as in **Set** (with this monoid structure, the maps π_i are monoid homomorphisms). **In PreOrd and Ord:** Similarly to what happens with monoids, a product of

 $((X_i, ≤i))_{i \in I}$ is given by $(\prod_i X_i, ≤)$ for a certain (pre)order ≤, namely:

$$
(x_i)_{i \in I} \leqslant (y_i)_{i \in I} \quad \iff \quad \forall i \in I, \ x_i \leqslant_i y_i
$$

- In $\mathcal{C}_{(X,\leq)}$ for a preordered set (X,\leq) : In this category there is at most one morphism of each "type" (source object + target object) so the commutativity of the diagram is irrelevant. What's important is the *existence* of morphisms: recall that $C_{(X,\leq)}(x,y) \neq \emptyset$ if and only if $x \leq y$. When *c* is the product of $(a_i)_{i \in I} \in X^I$, the diagram tells us that:
	- $\forall i \in I, c \leq a_i$ in other words, *c* is a lower bound of $\{a_i \mid i \in I\}$
	- *•* any other lower bound *x* is below *c*.

Thus, *c* is a product of $(a_i)_{i \in I}$ if and only if it is a *greatest lower bound*, also called an *infimum*, of $\{a_i \mid i \in I\}$.

Remark. In a partially ordered set, the infimum is unique if it exists and one can write $c = \inf_{i \in I} a_i$. But in a preordered set this is not necessarily so: in $\mathbb Z$ equipped with the divisibility preorder, *−*1 and 1 are both infima of the whole set Z.

In the special case $I = \emptyset$, all the A_i and all morphisms pointing to them disappear, and the diagram becomes:

A product of the empty family is just an object *C* (there are no projections) such that: for all $X \in ob(\mathcal{C})$, there exists a unique $h \in \mathcal{C}(X, C)$... and that's it (there is no "such that", *h* is not required to make anything commute)! Thus, a 0-ary product is the same thing as a *terminal object*:

Definition. An object *C* is *terminal* in the category *C* when $\text{card}(\mathcal{C}(X, C)) = 1$ for every $X \in ob(\mathcal{C})$.

- **In Set, Mon and PreOrd:** Singleton sets (equipped with the only possible structure) are terminal.
- **In Rel:** The empty set is terminal.
- **In** $\mathcal{C}_{(X,\leq)}$: Terminal objects are maximum elements of *X*.
	- (Indeed, an infimum of the empty subset is a maximum of the whole set!)

Now, every definition in category theory comes with a *dual* when applied to the opposite category.

Definition. A *coproduct* of a family of objects $(A_i)_{i \in I}$ in C^{op} is a product of this family in \mathcal{C}^{op} . Equivalently, it is a universal morphism from $(A_i)_{i \in I}$ to the diagonal functor $\Delta\colon \mathcal{C} \to \mathcal{C}^I$.

For binary coproducts $(I = \{1, 2\})$ the diagram is as follows — of course, it is the diagram of a product with the arrows reversed.

In Set, the disjoint sum $A_1 + A_2$ is a coproduct of A_1 and A_2 with

for
$$
i \in \{1, 2\}
$$
, $\iota_i \colon A_i \to A_1 + A_2$
 $a \mapsto (i, a)$

Indeed, the only map $h: A_1 + A_2 \rightarrow X$ that makes the diagram commute is

 $h: (i, a) \mapsto f_i(a)$