(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 2

16 SEPTEMBER 2024 — L. T. D. NGUYÊN

ANOTHER EXAMPLE OF STRUCTURE: (PRE)ORDERS

Definition. A *preorder* on a set *X* is a binary relation $(\leq) \subseteq X \times X$ which is:

reflexive: $\forall x \in X, x \leq x$

transitive: $\forall x, y, z \in X, (x \leq y) \text{ and } (y \leq z) \implies x \leq z$

Furthermore, \leq is a *partial order* if it is a preorder that is also

antisymmetric: $\forall x, y \in X, (x \leq y)$ and $(y \leq x) \implies x = y$

When \leq is a preorder (resp. partial order) on *X*, the pair (*X*, \leq) is called a *pre-ordered set* (resp. *partially ordered set*, often abbreviated as "poset").

Examples of posets include:

• (\mathbb{N}, \leqslant) or (\mathbb{R}, \leqslant) with the usual order

• the powerset $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ with the inclusion relation

An important source of preordered sets is:

Proposition. Let (M, \cdot, e) be a monoid. Then the following defines a preorder \leq on M:

 $x \preceq y$ when $\exists z \in M : x \cdot z = y$

(which may be called "left divisibility").

- over $(\mathbb{N}, +, 0)$ it defines the usual order
- over $(\mathbb{Z}, +, 0)$ it is the *trivial preorder*: $x \leq y$ for all $x, y \in \mathbb{Z}$ definitely not antisymmetric!
- over $(\mathbb{N}, \times, 1)$ or $(\mathbb{Z}, \times, 1)$ it is the *divisibility* relation antisymmetric over \mathbb{N} but not over \mathbb{Z}
- over the free monoid $(X^*, \cdot, [])$ it is the "prefix" relation

(Cultural remark: more generally this preorder is one of "Green's relations" on monoids and plays an important role in automata theory, see e.g. [Boj20].)

Definition. Let (X, \leq_X) and (Y, \leq_Y) be preordered sets. A function $f: X \to Y$ is *monotone* when $\forall x, y \in X, x \leq_X y \implies f(x) \leq_Y f(y)$.

For example, $\ell \in X^* \mapsto$ (set of elements appearing in ℓ) $\in \mathcal{P}(X)$ is monotone.

Proposition. Any monoid homomorphism $h: M \to N$ is monotone from (M, \preceq) to (N, \preceq) (using the above-defined left divisibility preorder).

Proof idea. Apply *h* to the equation $x \cdot y = z$ and use the homomorphism property.

CATEGORIES: BASIC DEFINITIONS (CONTINUED)

Recall that a category C consists of a collection of *objects* ob(C) and of collections of *morphisms* C(A, B) for any $A, B \in ob(C)$, endowed with an associative composition of morphisms and an identity morphism on each object. We saw the examples **Set** (sets and functions), **Mon** (monoids and homomorphisms) and **Rel** (sets and binary relations). Two examples similar to **Set** and **Mon** are:

the category of preorders: $ob(\mathbf{PreOrd}) = preordered sets$,

- $\mathbf{PreOrd}(A, B) =$ monotone functions from A to B
- the category of posets: ob(Ord) = partially ordered sets,

 $\mathbf{Ord}(A, B) =$ monotone functions from A to B

These are categories because the composition of two monotone functions is also monotone, and the identity function is monotone.

We also discussed set-theoretic "size issues" — the fact that the collections of all sets, of all monoids, etc. are not sets. There is some vocabulary for that:

Definition. A category C is:

- *locally small* when C(A, B) is a set for all $A, B \in ob(C)$
- *small* when it is locally small and ob(C) is a set

In general, the categories of "sets with structure" **Set**, **Mon**, **Rel**, **PreOrd**, etc. tend to be locally small but not small. *Nearly all our examples of categories in this course will be locally small.*

Examples of small categories include:

The empty category: its collection of objects is \emptyset

The smallest non-empty category: $ob(C) = \{A\}, C(A, A) = \{id_A\}$

The path category on a graph: Fix a directed graph. From this graph one can build a category G with

- $ob(\mathcal{G}) = vertices of the graph$
- $\mathcal{G}(u, v) =$ paths from u to v
- composition is path concatenation, id_u is the empty path

The objects in this category G are *not* "structured sets", we are not supposed to talk about their "elements". In other words:

for *A* an object of a category, " $a \in A$ " does not always make sense.

Here are some other important constructions of small categories whose objects are not set-like:

From a monoid to a category: Let (M, \cdot, e) be a monoid. We can define the category C_M as:

- there is a single object, which is arbitrary, let's call it *
- $\mathcal{C}(*,*) = M$
- $x \circ y = x \cdot y$ for $x, y \in \mathcal{C}(*, *)$
- $\operatorname{id}_* = e$

Associativity/unitality in M implies associativity/unitality in C_M .

 \rightarrow slogan: "*categories generalize monoids* by allowing composition to be defined only in 'well-typed' situations (types = objects)"

From a preorder to a category: Let (X, \leq) be a preordered set. We can define the category $C_{(X,\leq)}$ (or C_X slightly abusively) as:

• $\operatorname{ob}(\mathcal{C}_{(X,\leqslant)}) = X$

•
$$\mathcal{C}_{(X,\leqslant)}(x,y) = \begin{cases} \{*\} & \text{if } x \leqslant y \\ \varnothing & \text{otherwise} \end{cases}$$

where * is arbitrary. There is only one possible way to define composition and identities. Note that

existence of composition = transitivity of \leq

existence of identities = reflexivity of
$$\leq$$

and associativity/unitality are trivial: C(x, y) contains at most one element, so they must all be equal.

 \longrightarrow slogan: "*categories generalize preorders* by replacing a truth value $A \leq B$ with a collection of 'witnesses' C(A, B)".

3

Proposition. *Conversely, for a category C:*

- *if* C *is locally small and* $X \in ob(C)$ *, then* $(C(X, X), \circ, id_X)$ *is a monoid the monoid of* endomorphisms *of* X*;*
- *if* C *is small, then* $(ob(C), \leq)$ *is a preordered set, where* $A \leq B$ *is defined as* $C(A, B) \neq \emptyset$.

For example:

- The monotone functions from a preordered set to itself form a monoid.
- The preorder coming from the path category of a directed graph is the *reachability* relation $u \leq v \iff$ there exists a path from u to v.

Isomorphisms

Definition. Let C be a category and $A, B \in ob(C)$. A morphism $f \in C(A, B)$ is an *isomorphism* when there exists $g \in C(B, A)$ such that $g \circ f = id_A$ and $f \circ g = id_B$.

Remark. This amounts to saying that the following diagram commutes:

Proposition. In that case, g is unique; we call it the inverse of f and denote it by f^{-1} .

Proof. If g, g' are two inverses then $g = g \circ id_B = g \circ f \circ g' = id_A \circ g' = g'$.

Definition. We write $Iso_{\mathcal{C}}(A, B)$ for the collections of isomorphisms from A to B. When $Iso_{\mathcal{C}}(A, B) \neq \emptyset$ we say that A and B are isomorphic (notation: $A \cong B$).

In our examples of categories:

- In Set: bijections
- **In Rel:** relations $\{(a, f(a)) | a \in A\} \subseteq A \times B$ where $f : A \to B$ is a bijection **In Mon:** monoid isomorphisms = bijective homomorphisms (cf. Lecture 1) **In PreOrd and Ord:** strictly included in bijective monotone functions!
- For instance: the bijection $id_{\mathbb{N}}$ is monotone from $(\mathbb{N}, =)$ to (\mathbb{N}, \leqslant) ; if it had an inverse, it would necessarily be its inverse bijection (itself), which is not monotone from (\mathbb{N}, \leqslant) to $(\mathbb{N}, =)$, so there is no inverse.
- In a category coming from a preordered set (X, \leq) : we have $x \cong y$ in $\mathcal{C}_{(X, \leq)}$ if and only if $x \leq y$ and $y \leq x$.

equivalence relation induced by the preorder \leq

Proposition. *The composition of two isomorphisms is an isomorphism.*

Proof idea. The diagram below commutes because its restrictions to $\{A, B\}$ and to $\{B, C\}$ commute:

$$\mathrm{id}_A \overset{\mathrm{id}_B}{\overset{} \longleftarrow} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{g^{-1}} \mathrm{id}_C$$

from which we deduce that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Corollary. \cong *is transitive.*

FUNCTORS

Idea: functors are "morphisms between categories".

Definition. Let C and D be two categories. A *functor* $F : C \to D$ consists of:

- for every $A \in ob(\mathcal{C})$, an object $F(A) \in ob(\mathcal{D})$
- for all $A, B \in ob(\mathcal{C})$ and $f \in \mathcal{C}(A, B)$, a morphism $F(f) \in \mathcal{D}(F(A), F(B))$ such that

abuse of notation: also depends on A and B, not just f

- $\forall A \in ob(\mathcal{C}), F(id_A) = id_{F(A)}$
- $\forall A, B, C \in ob(\mathcal{C}), \forall f \in \mathcal{C}(A, B), \forall g \in \mathcal{C}(B, C), F(g \circ f) = F(g) \circ F(f)$ *Notation*: [C, D] is the collection of all functors from C to D.

Remark. Diagrammatically:

$$A \xrightarrow{g \circ f} C \xrightarrow{\text{image by } F} F(A) \xrightarrow{F(g \circ f)} F(C)$$

$$B \xrightarrow{F(g)} F(g)$$

The diagram on the left commutes by definition of o. The commutation of the right diagram is the axiom $F(g \circ f) = F(g) \circ F(f)$.

Proposition. A functor preserves all commutative diagrams, for instance

This is inconvenient to prove rigorously in full generality, as we have not defined formally what a commutative diagram is, but it makes intuitive sense. You may try to check, using the functor axioms, that the above example indeed works.

As an application:

Corollary. For $f \in \text{Iso}_{\mathcal{C}}(A, B)$ and $F \colon \mathcal{C} \to \mathcal{D}$ a functor, $F(f) \in \text{Iso}_{\mathcal{D}}(F(A), F(B))$.

Proof. Take the image by *F* of the diagram stating that *f* is an isomorphism:

$$F(\mathrm{id}_A) = \mathrm{id}_{F(A)} \bigoplus^{F(f)} F(A) \xrightarrow{F(f)} F(B) \longrightarrow^{\mathrm{id}_{F(B)} = F(\mathrm{id}_B)} F(B)$$

We see that $F(f)^{-1} = F(f^{-1})$ as we would have expected!

Next time we will see several examples of functors.

References

[Boj20] Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to objects such as trees and graphs, with an emphasis on definability in monadic second-order logic, 2020. Online book. arXiv:2008.11635.