
(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
LECTURE 2

16 SEPTEMBER 2024 — L. T. D. NGUYỄN

ANOTHER EXAMPLE OF STRUCTURE: (PRE)ORDERS
Definition. A preorder on a set X is a binary relation (⩽) ⊆ X ×X which is:

reflexive: ∀x ∈ X, x ⩽ x
transitive: ∀x, y, z ∈ X, (x ⩽ y) and (y ⩽ z) =⇒ x ⩽ z

Furthermore, ⩽ is a partial order if it is a preorder that is also
antisymmetric: ∀x, y ∈ X, (x ⩽ y) and (y ⩽ x) =⇒ x = y

When ⩽ is a preorder (resp. partial order) on X , the pair (X,⩽) is called a pre-
ordered set (resp. partially ordered set, often abbreviated as “poset”).

Examples of posets include:
• (N,⩽) or (R,⩽) with the usual order
• the powerset P(A) = {X | X ⊆ A} with the inclusion relation

An important source of preordered sets is:
Proposition. Let (M, ·, e) be a monoid. Then the following defines a preorder � onM :

x � y when ∃z ∈ M : x · z = y

(which may be called “left divisibility”).
• over (N,+, 0) it defines the usual order
• over (Z,+, 0) it is the trivial preorder: x � y for all x, y ∈ Z— definitely not
antisymmetric!

• over (N,×, 1) or (Z,×, 1) it is the divisibility relation— antisymmetric over
N but not over Z

• over the free monoid (X∗, ·, []) it is the “prefix” relation
(Cultural remark: more generally this preorder is one of “Green’s relations” on
monoids and plays an important role in automata theory, see e.g. [Boj20].)
Definition. Let (X,⩽X) and (Y,⩽Y ) be preordered sets. A function f : X → Y is
monotonewhen ∀x, y ∈ X, x ⩽X y =⇒ f(x) ⩽Y f(y).

For example, ℓ ∈ X∗ 7→ (set of elements appearing in ℓ) ∈ P(X) is monotone.
Proposition. Any monoid homomorphism h : M → N is monotone from (M,�) to
(N,�) (using the above-defined left divisibility preorder).
Proof idea. Apply h to the equation x · y = z and use the homomorphism property.

□

CATEGORIES: BASIC DEFINITIONS (CONTINUED)
Recall that a category C consists of a collection of objects ob(C) and of collections

of morphisms C(A,B) for any A,B ∈ ob(C), endowed with an associative composi-
tion of morphisms and an identity morphism on each object. We saw the examples
Set (sets and functions),Mon (monoids and homomorphisms) andRel (sets and
binary relations). Two examples similar to Set and Mon are:

1



2 16 SEPTEMBER 2024 — L. T. D. NGUYỄN

the category of preorders: ob(PreOrd) = preordered sets,
PreOrd(A,B) = monotone functions from A to B

the category of posets: ob(Ord) = partially ordered sets,
Ord(A,B) = monotone functions from A to B

These are categories because the composition of two monotone functions is also
monotone, and the identity function is monotone.

We also discussed set-theoretic “size issues”— the fact that the collections of all
sets, of all monoids, etc. are not sets. There is some vocabulary for that:

Definition. A category C is:
• locally small when C(A,B) is a set for all A,B ∈ ob(C)
• small when it is locally small and ob(C) is a set

In general, the categories of “sets with structure” Set, Mon, Rel, PreOrd, etc.
tend to be locally small but not small. Nearly all our examples of categories in this
course will be locally small.

Examples of small categories include:
The empty category: its collection of objects is ∅
The smallest non-empty category: ob(C) = {A}, C(A,A) = {idA}
The path category on a graph: Fix a directed graph. From this graph one

can build a category G with
• ob(G) = vertices of the graph
• G(u, v) = paths from u to v
• composition is path concatenation, idu is the empty path

The objects in this category G are not “structured sets”, we are not sup-
posed to talk about their “elements”. In other words:

for A an object of a category, “a ∈ A” does not always make sense.
Here are some other important constructions of small categories whose objects are
not set-like:

From a monoid to a category: Let (M, ·, e) be a monoid. We can define the
category CM as:

• there is a single object, which is arbitrary, let’s call it ∗
• C(∗, ∗) = M
• x ◦ y = x · y for x, y ∈ C(∗, ∗)
• id∗ = e

Associativity/unitality in M implies associativity/unitality in CM .
−→ slogan: “categories generalize monoids by allowing composition to be
defined only in ‘well-typed’ situations (types = objects)”

From a preorder to a category: Let (X,⩽) be a preordered set. We can define
the category C(X,⩽) (or CX slightly abusively) as:

• ob(C(X,⩽)) = X

• C(X,⩽)(x, y) =

{
{∗} if x ⩽ y

∅ otherwise
where ∗ is arbitrary. There is only one possible way to define composition
and identities. Note that

existence of composition = transitivity of ⩽
existence of identities = reflexivity of ⩽

and associativity/unitality are trivial: C(x, y) contains atmost one element,
so they must all be equal.
−→ slogan: “categories generalize preorders by replacing a truth valueA ⩽ B
with a collection of ‘witnesses’ C(A,B)”.



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 2 3

Proposition. Conversely, for a category C:
• if C is locally small and X ∈ ob(C), then (C(X,X), ◦, idX) is a monoid – the
monoid of endomorphisms of X ;

• if C is small, then (ob(C),⩽) is a preordered set, where A ⩽ B is defined as
C(A,B) 6= ∅.

For example:
• The monotone functions from a preordered set to itself form a monoid.
• The preorder coming from the path category of a directed graph is the
reachability relation u ⩽ v ⇐⇒ there exists a path from u to v.

ISOMORPHISMS
Definition. Let C be a category and A,B ∈ ob(C). A morphism f ∈ C(A,B) is an
isomorphism when there exists g ∈ C(B,A) such that g ◦ f = idA and f ◦ g = idB .

Remark. This amounts to saying that the following diagram commutes:

A BidA

f

g

idB

Proposition. In that case, g is unique; we call it the inverse of f and denote it by f−1.

Proof. If g, g′ are two inverses then g = g ◦ idB = g ◦ f ◦ g′ = idA ◦ g′ = g′. □

Definition. We write IsoC(A,B) for the collections of isomorphisms from A to B.
When IsoC(A,B) 6= ∅ we say that A and B are isomorphic (notation: A ∼= B).

In our examples of categories:
In Set: bijections
InRel: relations {(a, f(a)) | a ∈ A} ⊆ A×B where f : A → B is a bijection
InMon: monoid isomorphisms = bijective homomorphisms (cf. Lecture 1)
In PreOrd and Ord: strictly included in bijective monotone functions!

For instance: the bijection idN is monotone from (N,=) to (N,⩽); if it had
an inverse, it would necessarily be its inverse bijection (itself), which is not
monotone from (N,⩽) to (N,=), so there is no inverse.

In a category coming from a preordered set (X,⩽): we have x ∼= y in C(X,⩽)

if and only if x ⩽ y and y ⩽ x︸ ︷︷ ︸
equivalence relation induced by the preorder ⩽

.

Proposition. The composition of two isomorphisms is an isomorphism.

Proof idea. The diagram below commutes because its restrictions to {A,B} and to
{B,C} commute:

A B CidA

f

f−1

idB

g

g−1

idC

from which we deduce that (g ◦ f)−1 = f−1 ◦ g−1. □

Corollary. ∼= is transitive.



4 16 SEPTEMBER 2024 — L. T. D. NGUYỄN

FUNCTORS
Idea: functors are “morphisms between categories”.

Definition. Let C and D be two categories. A functor F : C → D consists of:
• for every A ∈ ob(C), an object F (A) ∈ ob(D)
• for all A,B ∈ ob(C) and f ∈ C(A,B), a morphism F (f)︸ ︷︷ ︸

abuse of notation: also depends on A andB, not just f

∈ D(F (A), F (B))

such that
• ∀A ∈ ob(C), F (idA) = idF (A)

• ∀A,B,C ∈ ob(C), ∀f ∈ C(A,B), ∀g ∈ C(B,C), F (g ◦ f) = F (g) ◦ F (f)

Notation: [C,D] is the collection of all functors from C to D.
Remark. Diagrammatically:

A C

B

g◦f

f g

image by F−−−−−−−−−−→
F (A) F (C)

F (B)

F (g◦f)

F (f) F (g)

The diagram on the left commutes by definition of ◦. The commutation of the right
diagram is the axiom F (g ◦ f) = F (g) ◦ F (f).
Proposition. A functor preserves all commutative diagrams, for instance

A B

C D

f

g h
j

i

image by F−−−−−−−−−−→

F (A) F (B)

F (C) F (D)

F (f)

F (g)
F (h)

F (j)

F (i)

This is inconvenient to prove rigorously in full generality, as we have not defined
formally what a commutative diagram is, but it makes intuitive sense. Youmay try
to check, using the functor axioms, that the above example indeed works.

As an application:
Corollary. For f ∈ IsoC(A,B) and F : C → D a functor, F (f) ∈ IsoD(F (A), F (B)).
Proof. Take the image by F of the diagram stating that f is an isomorphism:

F (A) F (B)F (idA)=idF (A)

F (f)

F (g)

idF (B)=F (idB)

We see that F (f)−1 = F (f−1) as we would have expected! □
Next time we will see several examples of functors.

REFERENCES
[Boj20] Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to

objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic, 2020. Online book. arXiv:2008.11635.

https://arxiv.org/abs/2008.11635

	Another example of structure: (pre)orders
	Categories: basic definitions (continued)
	Isomorphisms
	Functors
	References

