(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 2

16 SEPTEMBER 2024 — L. T. D. NGUYỄN

ANOTHER EXAMPLE OF STRUCTURE: (PRE)ORDERS

Definition. A *preorder* on a set *X* is a binary relation (\leq) \subseteq *X* \times *X* which is:

reflexive: $\forall x \in X, x \leq x$

transitive: $\forall x, y, z \in X, (x \leq y) \text{ and } (y \leq z) \implies x \leq z$

Furthermore, \leq is a *partial order* if it is a preorder that is also

antisymmetric: $\forall x, y \in X, (x \leq y) \text{ and } (y \leq x) \implies x = y$

When \leq is a preorder (resp. partial order) on *X*, the pair (X, \leq) is called a *preordered set* (resp. *partially ordered set*, often abbreviated as "poset").

Examples of posets include:

- (\mathbb{N}, \leqslant) or (\mathbb{R}, \leqslant) with the usual order
- the powerset $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ with the inclusion relation

An important source of preordered sets is:

Proposition. Let (M, \cdot, e) be a monoid. Then the following defines a preorder \preceq on M:

x \prec *y when* ∃*z* \in *M* : *x* \cdot *z* = *y*

(which may be called "left divisibility").

- over $(N, +, 0)$ it defines the usual order
- over $(\mathbb{Z}, +, 0)$ it is the *trivial preorder*: $x \preceq y$ for *all* $x, y \in \mathbb{Z}$ definitely not antisymmetric!
- over $(N, \times, 1)$ or $(\mathbb{Z}, \times, 1)$ it is the *divisibility* relation antisymmetric over N but not over Z
- *•* over the free monoid (*X[∗] , ·,* []) it is the "prefix" relation

(Cultural remark: more generally this preorder is one of "Green's relations" on monoids and plays an important role in automata theory, see e.g. [Boj20].)

Definition. Let (X, \leqslant_X) and (Y, \leqslant_Y) be preordered sets. A function $f: X \to Y$ is *monotone* when $\forall x, y \in X$, $x \leqslant_X y \implies f(x) \leqslant_Y f(y)$.

For example, $\ell \in X^* \mapsto$ (set of elements appearing in ℓ) $\in \mathcal{P}(X)$ [is mo](#page-3-0)notone.

Proposition. Any monoid homomorphism $h: M \rightarrow N$ is monotone from (M, \preceq) to (N, \preceq) (using the above-defined left divisibility preorder).

Proof idea. Apply *h* to the equation $x \cdot y = z$ and use the homomorphism property. □

CATEGORIES: BASIC DEFINITIONS (CONTINUED)

Recall that a category $\mathcal C$ consists of a collection of *objects* ob($\mathcal C$) and of collections of *morphisms* $C(A, B)$ for any $A, B \in ob(\mathcal{C})$, endowed with an associative composition of morphisms and an identity morphism on each object. We saw the examples **Set** (sets and functions), **Mon** (monoids and homomorphisms) and **Rel** (sets and binary relations). Two examples similar to **Set** and **Mon** are:

the category of preorders: ob(**PreOrd**) = preordered sets,

- $$
- **the category of posets:** $ob(Ord) =$ partially ordered sets,

 $\text{Ord}(A, B) = \text{monotone functions from } A \text{ to } B$

These are categories because the composition of two monotone functions is also monotone, and the identity function is monotone.

We also discussed set-theoretic "size issues" — the fact that the collections of all sets, of all monoids, etc. are not sets. There is some vocabulary for that:

Definition. A category *C* is:

- *locally small* when $C(A, B)$ is a set for all $A, B \in ob(\mathcal{C})$
- *small* when it is locally small and $ob(C)$ is a set

In general, the categories of "sets with structure" **Set**, **Mon**, **Rel**, **PreOrd**, etc. tend to be locally small but not small. *Nearly all our examples of categories in this course will be locally small.*

Examples of small categories include:

The empty category: its collection of objects is ∅

The smallest non-empty category: $ob(\mathcal{C}) = \{A\}$, $\mathcal{C}(A, A) = \{id_A\}$

The path category on a graph: Fix a directed graph. From this graph one can build a category *G* with

- $ob(\mathcal{G})$ = vertices of the graph
- $G(u, v) =$ paths from *u* to *v*
- *•* composition is path concatenation, id*^u* is the empty path

The objects in this category *G* are *not* "structured sets", we are not supposed to talk about their "elements". In other words:

for *A* an object of a category, " $a \in A$ " does not always make sense.

Here are some other important constructions of small categories whose objects are not set-like:

From a monoid to a category: Let (M, \cdot, e) be a monoid. We can define the category C_M as:

- *•* there is a single object, which is arbitrary, let's call it *∗*
- $C(*,*) = M$
- $x \circ y = x \cdot y$ for $x, y \in \mathcal{C}(*, *)$
- *•* id*[∗]* = *e*

Associativity/unitality in *M* implies associativity/unitality in *CM*.

−→ slogan: "*categories generalize monoids* by allowing composition to be defined only in 'well-typed' situations (types = objects)"

From a preorder to a category: Let (X, \leq) be a preordered set. We can define the category $C_{(X,\leq)}$ (or C_X slightly abusively) as:

• $ob(C_{(X,\leqslant)})=X$

•
$$
\mathcal{C}_{(X,\leq)}(x,y) = \begin{cases} \{*\} & \text{if } x \leq y \\ \varnothing & \text{otherwise} \end{cases}
$$

where *∗* is arbitrary. There is only one possible way to define composition and identities. Note that

existence of composition $=$ transitivity of \leq

existence of identities = reflexivity of
$$
\le
$$

and associativity/unitality are trivial: $C(x, y)$ contains at most one element, so they must all be equal.

−→ slogan: "*categories generalize preorders* by replacing a truth value *A* ⩽ *B* with a collection of 'witnesses' $C(A, B)$ ".

Proposition. *Conversely, for a category C:*

- *if* C *is locally small and* $X \in ob(C)$ *, then* $(C(X, X), \circ, id_X)$ *is a monoid the monoid of* endomorphisms *of X;*
- *if C is small, then* $(ob(C), \leqslant)$ *is a preordered set, where* $A \leqslant B$ *is defined as* $C(A, B) \neq \emptyset$ *.*

For example:

- *•* The monotone functions from a preordered set to itself form a monoid.
- *•* The preorder coming from the path category of a directed graph is the *reachability* relation $u \leq v \iff$ there exists a path from *u* to *v*.

ISOMORPHISMS

Definition. Let *C* be a category and $A, B \in ob(\mathcal{C})$. A morphism $f \in \mathcal{C}(A, B)$ is an *isomorphism* when there exists $g \in C(B, A)$ such that $g \circ f = id_A$ and $f \circ g = id_B$.

Remark. This amounts to saying that the following diagram commutes:

Proposition. *In that case, g is unique; we call it the* inverse *of f and denote it by f −*1 *.*

Proof. If g, g' are two inverses then $g = g \circ \mathrm{id}_B = g \circ f \circ g' = \mathrm{id}_A \circ g' = g'$ \Box

Definition. We write $\text{Iso}_\mathcal{C}(A, B)$ for the collections of isomorphisms from *A* to *B*. When $\text{Iso}_{\mathcal{C}}(A, B) \neq \emptyset$ we say that *A* and *B* are isomorphic (notation: *A* \cong *B*).

In our examples of categories:

- **In Set:** bijections
- **In Rel:** relations $\{(a, f(a)) | a \in A\} ⊆ A × B$ where $f : A → B$ is a bijection **In Mon:** monoid isomorphisms = bijective homomorphisms (cf. Lecture 1) **In PreOrd and Ord:** strictly included in bijective monotone functions!
- For instance: the bijection id_N is monotone from $(N, =)$ to (N, \leq) ; if it had an inverse, it would necessarily be its inverse bijection (itself), which is not monotone from (N, \leq) to $(N, =)$, so there is no inverse.
- **In a category coming from a preordered set (***X***, ≤): we have** $x \cong y$ **in** $\mathcal{C}_{(X,\leq)}$ if and only if $x \leqslant y$ and $y \leqslant x$.

equivalence relation induced by the preorder \leq

Proposition. *The composition of two isomorphisms is an isomorphism.*

Proof idea. The diagram below commutes because its restrictions to *{A, B}* and to *{B, C}* commute:

$$
\operatorname{id}_A \left(\begin{array}{c} \begin{matrix} & & \operatorname{id}_B \\ \downarrow & & \nearrow \\ A & \xrightarrow{\qquad \qquad f \longrightarrow B} \begin{matrix} & g \\ & \searrow & \\ \hline & & g^{-1} \end{matrix} \end{array} \right) \operatorname{id}_C
$$

from which we deduce that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Corollary. *∼*= *is transitive.*

. □

FUNCTORS

Idea: functors are "morphisms between categories".

Definition. Let *C* and *D* be two categories. A *functor* $F: C \to D$ consists of:

• for every $A \in ob(\mathcal{C})$, an object $F(A) \in ob(\mathcal{D})$

• for all *A*, *B* ∈ ob(*C*) and *f* ∈ *C*(*A*, *B*), a morphism $F(f)$ ∈ $D(F(A), F(B))$ abuse of notation: also depends on A and B , not just f such that

 \bullet ∀*A* \in ob(*C*)*,* $F(\text{id}_A) = \text{id}_{F(A)}$

• $\forall A, B, C \in ob(\mathcal{C}), \forall f \in \mathcal{C}(A, B), \forall g \in \mathcal{C}(B, C), F(g \circ f) = F(g) \circ F(f)$

Notation: $[C, D]$ is the collection of all functors from C to D .

Remark. Diagrammatically:

The diagram on the left commutes by definition of *◦*. The commutation of the right diagram is the axiom $F(g \circ f) = F(g) \circ F(f)$.

Proposition. *A functor preserves* all *commutative diagrams, for instance*

This is inconvenient to prove rigorously in full generality, as we have not defined formally what a commutative diagram is, but it makes intuitive sense. You may try to check, using the functor axioms, that the above example indeed works.

As an application:

Corollary. For $f \in \text{Iso}_{\mathcal{C}}(A, B)$ and $F: \mathcal{C} \to \mathcal{D}$ a functor, $F(f) \in \text{Iso}_{\mathcal{D}}(F(A), F(B))$.

Proof. Take the image by *F* of the diagram stating that *f* is an isomorphism:

$$
F(\mathrm{id}_A)=\mathrm{id}_{F(A)}\underset{F(g)}{\underbrace{F(f)}}\xrightarrow{F(f)}\underset{F(g)}{\underbrace{F(B)}}\bigcap\mathrm{id}_{F(B)}=F(\mathrm{id}_B)
$$

We see that $F(f)^{-1} = F(f^{-1})$ as we would have expected! □

Next time we will see several examples of functors.

REFERENCES

[Boj20] Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to objects such as trees and graphs, with an emphasis on definability in monadic second-order logic, 2020. Online book. arXiv:2008.11635.