
(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS:
LECTURE 1

12 SEPTEMBER 2024 — L. T. D. NGUYỄN

A COMPUTER SCIENCE MOTIVATION: PROGRAMMING LANGUAGE SEMANTICS
Let us brieflydiscuss one of the uses of categories for computer science— though

by no means the only one: the coalgebra course (CR17) provides another.
To formally study programs, one needs to rigorously define their meaning. The

definition should ideally be “high level” and independent of, say, any specific in-
struction set architecture. The approach known as denotational semantics interprets
expressions in programs as mathematical objects: the meaning of a function f of
type (int -> int) -> int would naively be a map JfK : ZZ → Z.

This naive idea onlyworks in toy cases: it does not “scale up” to complex features
of programming languages. In order to interpret loops and recursion by “taking
the limit asN → ∞ ofN iterations”, the first denotational semantics that appeared1

in the late 1960s / early 1970s used topology:
• the types int, int -> int, etc. are interpreted as (weird) “spaces”, which

are sets of points endowed with extra structure;
• JfK : JintK → Jint -> intK should be a continousmap, i.e. amap between

the sets of points that “preserves” the extra structure.
For a while, denotational semantics relied on this paradigm of “structured sets”
with variations on the structure. But in later models of programming languages
(quantitative semantics, game semantics, …), the interpretation JfK is not even a
set-theoretic map! This parallels the 20th century development (cf. [Cor04]) of
structural mathematics, starting from structured sets (vector spaces, groups, etc.)
and eventually leading to the invention of category theory [EML45]when the need
for a more abstract setting arose in algebra and topology.

Thus, category theory provides a way to axiomatize “what is a semantics of
some given language” that is general enough to cover this wide variety of concrete
semantics. In return, categorical semantics has inspired features of programming
languages—either theoretical or actually implemented. Themost famous example
is that of monads in functional programming [Pet18] (i.e. burritos [Yor09]) which
came from a semantic account of side effects (such as printing “Hello world!”).

REMINDER: MONOIDS AS AN EXAMPLE OF ALGEBRAIC STRUCTURES
Many of the usual “basic” examples of categories involve algebraic structures.

We avoid advanced examples here, but recall a basic one, which plays a major role
in computer science (for instance in automata theory).
Definition. A monoid is (M, ·, e) where:

• M is a set
• · is a binary operation M ×M → M
• e is an element of M (the “unit”)

such that
1For a history of programming language semantics, see [Ast19].

1



2 12 SEPTEMBER 2024 — L. T. D. NGUYỄN

associativity: ∀x, y, z ∈ M, (x · y) · z = x · (y · z)
unitality: ∀x ∈ M, x · e = e · x = x

There are many examples (below, X is a set):
• (N,+, 0), (Z,+, 0), (R,+, 0)
• (N,×, 1), (Z,×, 1), (R,×, 1)
• (X∗, ·, [])whereX∗ is the set of finite listswith elements inX , the operation
· is list concatenation and [] is the empty list

• the set of all functionsX → X with function composition and the identity
function idX

• the set of all bijections X ∼−→ X with composition and the identity

Remark. Abuse of notation: we may write M instead of (M, ·, e) when there is no
ambiguity on the operation and the unit (so, for instance, for “the monoid X∗”).

Remark. Associativity allows us towrite x1 ·. . .·xn without parentheses— or even
x1 . . . xn —when x1, . . . , xn are elements of somemonoidM . Typically in (N,+, 0)
we can write 1 + 3 + 42 + 7 and the meaning is unambiguous.

Definition. A homomorphism of monoids from (M, ·M , eM ) to (M ′, ·M ′ , eM ′) is a
map h : M → M ′ such that

• ∀x, y ∈ M, h(x ·M y) = h(x) ·M ′ h(y)
• h(eM ) = eM ′

Again, many examples:
• the inclusion map x ∈ N 7→ x ∈ R is both a homomorphism from (N,+, 0)

to (R,+, 0) and a homomorphism from (N,×, 1) to (R,×, 1)
• x 7→ (−2)x is a homomorphism from (N,+, 0) to (Z,×, 1)
• taking the length of a list defines a homomorphism from X∗ to (N,+, 0)

Proposition (closure under composition). The composition of a homomorphism from
M toM ′ with a homomorphism fromM ′ toM ′′ is itself a homomorphism fromM toM ′′.

Furthermore, since idM is a homomorphism from M to M , this implies that the
homomorphisms from M to M — also called the endomorphisms of M — form a
monoid with function composition!

Definition. A homomorphism f : M → M ′ is an isomorphism when there exists a
homomorphism g : M ′ → M such that g ◦ f = idM and f ◦ g = idM ′ .

Necessarily, if this is the case, f must be a bijection and g must be its inverse:
g = f−1. As an example:

• For lists over a singleton set {a}, the length homomorphism {a}∗ → N is
an isomorphism. Its inverse is n 7→ [a, . . . , a] (n times).

Actually, when f is a bijective homomorphism, f−1 is automatically a homomor-
phism too; in other words:

Proposition. A homomorphism f : M → M ′ is an isomorphism if and only if it is a
bijection.

But this does not alwaysworkwith all algebraic structures; the “right” definition
of isomorphism is the first one.

We say that M and M ′ are isomorphic when some isomorphism from M to M ′

exists. This means that they “are the same” with respect to the monoid structure.
Notation: M ∼= M ′.



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 1 3

AN EXAMPLE OF UNIVERSAL PROPERTY: THE FREE MONOID
It is often said that “X∗ is the free monoid over the set X”. This refers to the

following property. Let ι : x ∈ X 7→ [x] ∈ X∗.

Theorem (Universal property of X∗). Let X be a set. For any monoid (M, ·, e) and
map f : X → M , there exists a unique homomorphism h : X∗ → M such that f = h ◦ ι.

Proof. First, note that f = h ◦ ι means that ∀x ∈ X, f(x) = h([x]).
For uniqueness, assume that h satisfies this equation. Then h([]) = e because a

homomorphism must preserve the units, and for n ∈ N,

h([x1, . . . , xn+1]) = h([x1, . . . , xn] · [xn+1])

= h([x1, . . . , xn]) · h([xn+1])

= h([x1, . . . , xn]) · f(xn+1)

By induction we have h([x1, . . . , xn]) = f(x1) · . . . · f(xn) and this uniquely defines
f because every element of X is of this form for some n ∈ N.

For existence, we can check that the above equation always defines a homomor-
phism h such that f = h ◦ ι. �

This property is usually drawn as the following commutative diagram:

X X∗

M

ι

f
∃!h homomorphism

By convention, we use “→” arrows to represent given data, and “99K” arrows to
represent things that we then claim must exist. There are two paths from X to
M in the diagram, one with a single arrow representing the map f , another with
two arrows representing the composite h ◦ ι (“first apply ι then apply h”). To say
that the diagram commutes is to say that these paths denote the same map, in other
words, f = h ◦ ι.

Let us now see, as a first illustration of the spirit of category theory, why the
universal property characterizes X∗ up to isomorphism. (Later in the course we will
even say “up to unique isomorphism” but this requires some precautions.) This is
how category theory identifies canonical constructions, thus serving as “essential
guidance” [Mad19] in some branches of mathematics and theoretical computer
science.

Proposition. Suppose that some monoid N and some map g : X → N satisfy the same
universal property: for any monoid M and map f : X → M , there exists a unique homo-
morphism h : N → M such that f = h ◦ g.

X N

M

g

f
∃!h homomorphism

Then X∗ ∼= N .

(For example, for X = {a}, we can take N = N and g(a) = 1.)



4 12 SEPTEMBER 2024 — L. T. D. NGUYỄN

Proof. Let us prove that by reasoning only on compositions of homomorphisms
using the universal property. First we apply the property for X∗, taking M = N
and f = g: there exists a unique homomorphism h1 such that g = h1 ◦ ι.

X X∗

N

ι

g
∃!h1 homomorphism

Then we apply the property for N , taking M = X∗ and f = ι:

X N

X∗

g

ι
∃!h2 homomorphism

We would now like to show that h1 and h2 are inverse to each other. First let us
show h1◦h2 = idN . The trick is to use the uniqueness part of the universal property
for N . We apply with M = N and f = g:

X N

N

g

g
∃!h homomorphism

• Since g = idN ◦g, the diagram commutes when h is replaced by the homo-
morphism idN ; by uniqueness, h = idN .

• Also, g = h1◦ι = h1◦(h2◦g) = (h1◦h2)◦g, and h1◦h2 is a homomorphism
(by closure under composition); so, by uniqueness again, h = h1 ◦ h2.

Thus, h1◦h2 = idN . Symmetrically, we can use the uniqueness part of the universal
property of X∗ to show that h2 ◦ h1 = idX∗ . Therefore, h1 and h2 are mutually
inverse isomorphisms of monoids. �

Remark. The computation g = (h1 ◦ h2) ◦ g can be carried out diagrammatically:

X N

X∗

N

g

ι

g

h2

h1

The basic idea is that “the two small inner triangles commute (by definition of h2

and h1), therefore the big outer triangle commutes”.

Observe that the proof of this proposition only manipulates functions, homo-
morphisms and their compositions, without mentioning lists or the elements of
the monoids. This is category-theoretic reasoning!



(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: LECTURE 1 5

CATEGORIES: BASIC DEFINITIONS
Definition. A category C consists of:

• a collection ob(C) of objects
• for any two objects A,B ∈ ob(C), a collection C(A,B) of morphisms, which

are denoted diagrammatically as

A
f−−→ B for f ∈ C(A,B)

• for any A,B,C ∈ ob(C), a composition operation

◦ : C(B,C)× C(A,B) → C(A,C)

A C

B

g◦f

f g

• for each A ∈ ob(C), an identity morphism idA ∈ C(A,A)

such that, for any A,B,C,D ∈ ob(C),
assoc.: ∀f ∈ C(A,B), ∀g ∈ C(B,C), ∀h ∈ C(C,D), (h ◦ g) ◦ f = h ◦ (g ◦ f)

which makes the meaning of h ◦ g ◦ f non-ambiguous

A D

B C

h◦g◦f

f

g

h

unitality: ∀f ∈ C(A,B), f ◦ idA = idB ◦ f = f

The basic examples are categories of structured sets with usual function com-
position and identity maps:

the “category of sets”: ob(Set) = all sets, Set(A,B) = all maps A → B
the “category of monoids”: ob(Mon) = all monoids, Mon(M,N) = all ho-

momorphisms M → N (this works thanks to closure under composition)

Remark. In usual foundations of mathematics (most of the time, ZFC set theory),
the collection of all sets is not a set (Russell’s paradox, etc.). This is why we remain
vague about what a “collection” is.

Warning: The name “category of sets” is somewhat abusive: it describes only the
objects, but in a category themorphisms and composition aremore important than
the objects! Another category with all sets as objects is

the “category of relations”: ob(Rel) = all sets, Rel(A,B) = all subsets of
A×B, i.e. binary relations from A to B

Recall that the usual composition of two relations is defined as

R′ ◦R = {(x, z) | ∃y : (x, y) ∈ R and (y, z) ∈ R′}

With the identity relation idA = {(a, a) | a ∈ A}, this defines the categoryRel. (To
prove it, you should check the associativity and unitality axioms.)

Remark. A little inconsistency in naming conventions: the names Set and Mon
refer to the objects of the category, but the name Rel refers to its morphism.



6 12 SEPTEMBER 2024 — L. T. D. NGUYỄN

REFERENCES
[Ast19] Troy Astarte. Formalising Meaning: a History of Programming Language Semantics. PhD thesis,

Newcastle upon Tyne, 2019. URL: http://homepages.cs.ncl.ac.uk/troy.astarte/res/
pdf/TK_Astarte_Formalising_Meaning_2019.pdf.

[Cor04] Leo Corry. Modern Algebra and the Rise of Mathematical Structures. Birkhäuser Verlag, 2nd edi-
tion, 2004. doi:10.1007/978-3-0348-7917-0.

[EML45] Samuel Eilenberg and Saunders Mac Lane. General theory of natural equivalences.
Transactions of the American Mathematical Society, pages 231–294, 1945. doi:10.1090/
S0002-9947-1945-0013131-6.

[Mad19] Penelope Maddy. What do we want a foundation to do? In Stefania Centrone, Deborah Kant,
and Deniz Sarikaya, editors, Reflections on the Foundations of Mathematics: Univalent Founda-
tions, Set Theory and General Thoughts, pages 293–311. Springer Verlag, 2019.

[Pet18] Tomas Petricek. What we talk about when we talk about monads. The Art, Science, and Engi-
neering of Programming, 2(3):12, 2018. doi:10.22152/programming-journal.org/2018/2/
12.

[Yor09] Brent Yorgey. Abstraction, intuition, and the “monad tutorial fallacy”, January 2009. URL:
https://archive.ph/8JmUg.

http://homepages.cs.ncl.ac.uk/troy.astarte/res/pdf/TK_Astarte_Formalising_Meaning_2019.pdf
http://homepages.cs.ncl.ac.uk/troy.astarte/res/pdf/TK_Astarte_Formalising_Meaning_2019.pdf
https://doi.org/10.1007/978-3-0348-7917-0
https://doi.org/10.1090/S0002-9947-1945-0013131-6
https://doi.org/10.1090/S0002-9947-1945-0013131-6
https://doi.org/10.22152/programming-journal.org/2018/2/12
https://doi.org/10.22152/programming-journal.org/2018/2/12
https://archive.ph/8JmUg

	A computer science motivation: Programming language semantics
	Reminder: monoids as an example of algebraic structures
	An example of universal property: the free monoid
	Categories: basic definitions
	References

