(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 3

30 SEPTEMBER 2024 — L. T. D. NGUYÊN

Exercise 1

Let $(\mathcal{C}, \&, \top)$ be a cartesian category and $A, B, C \in ob(\mathcal{C})$.

1. For each $X \in \{A, B, C\}$, define a morphism $p_X \in C((A \& B) \& C, X)$ using projections and composition.

2. Let $Y \in ob(\mathcal{C})$ and $h \in \mathcal{C}(Y, (A \& B) \& C)$. Let $f_A = p_A \circ h$ and likewise $f_B = p_B \circ h$. Prove that $\pi_1^{(A \& B), C} \circ h = \langle f_A, f_B \rangle$, where $\langle -, - \rangle$ is the pairing for some product — which one?

3. Show that $((A \& B) \& C, p_A, p_B, p_C)$ is a product of the family (A, B, C). *Hint: use the previous question as an intermediate step.*

4. Suppose that we also know that A&(B&C) is a product of A, B, C (with suitable projections). What can we then conclude?

Exercise 2

We write $\mathcal{P}(A) = \{X \mid X \subseteq A\}$ for the powerset of the set *A*. For two sets *A* and *B*, a subset $X \in \mathcal{P}(A)$ and a binary relation $R \subseteq A \times B$, let

$$R_{\dagger}X = \{b \in B \mid \exists a \in X : (a,b) \in R\}$$

Consider the following endofunctor on the category **Rel** of relations (we admit that it is a functor, i.e. preserves composition and identities):

$$F : \mathbf{Rel} \to \mathbf{Rel}$$
$$A \in \mathrm{ob}(\mathbf{Rel}) \mapsto \mathcal{P}(A)$$
$$R \in \mathbf{Rel}(A, B) \mapsto \{(X, R_{\dagger}X) \mid X \in \mathcal{P}(A)\}$$

1. Show that the following family $(\alpha_A)_{A \in ob(\mathbf{Rel})}$ of binary relations defines a natural transformation $\alpha \colon F \Rightarrow \operatorname{Id}_{\mathbf{Rel}} : \alpha_A = \{(X, x) \mid X \in \mathcal{P}(A), x \in X\}.$

2. Show that the following family $(\beta_A)_{A \in ob(\mathbf{Rel})}$ of relations *does not* define a natural transformation from *F* to $\mathrm{Id}_{\mathbf{Rel}}$: $\beta_A = \{(\{a\}, a) \mid a \in A\}$. *Hint: look at the naturality condition for* $\{(0, 1), (0, 2)\} \in \mathbf{Rel}(\{0\}, \{1, 2\})$.