(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 2

23 SEPTEMBER 2024 — L. T. D. NGUYỄN

Exercise 1

1. Show that the following defines a functor:

 $\operatorname{Rev} \colon \mathbf{Rel}^{\operatorname{op}} \to \mathbf{Rel}$

 $A \mapsto A$ on objects

 $R \subseteq B \times A \mapsto \{(a, b) \mid (b, a) \in R\}$ on morphisms

2. What can you say about $\operatorname{Rev} \circ \operatorname{Rev}^{\operatorname{op}}$ and $\operatorname{Rev}^{\operatorname{op}} \circ \operatorname{Rev}$?

Exercise 2

A *commutative monoid* is a monoid M such that $x \cdot y = y \cdot x$ for all $x, y \in M$. Let **CMon** be the category whose objects are commutative monoids and whose morphisms are monoid homomorphisms, with usual composition and identities.

1. Let *M* and *N* be commutative monoids. Show that $(M \times N, \iota_1, \iota_2)$ is a coproduct *in the category* **CMon** of *M* and *N*, where $\iota_1 : m \in M \mapsto (m, e_N)$ and $\iota_2 : n \in N \mapsto (e_M, n)$. (e_M is the unit element of *M*.)

Hint: given $f: M \to P$ and $g: N \to P$ two monoid homomorphisms, with *P* commutative, consider $(f \cdot g): (m, n) \mapsto f(m) \cdot g(n)$.

2. We consider \mathbb{N} as the monoid $(\mathbb{N}, +, 0)$. Let a and b be two different letters, $\operatorname{repeat}_a: n \in \mathbb{N} \mapsto a \dots a$ (n times) and $\operatorname{repeat}_b: n \in \mathbb{N} \mapsto b \dots b$ (n times). Show that *there does* **not** *exist any* $h \in \operatorname{Mon}(\mathbb{N} \times \mathbb{N}, \{a, b\}^*)$ such that the diagram below commutes, where ι_1, ι_2 are defined as in the previous question (with $e_{\mathbb{N}} = 0$):

Hint: use the *noncommutativity* of the monoid $\{a, b\}^*$.

3. What can you conclude about coproducts in the category Mon?