(CR15) CATEGORY THEORY FOR COMPUTER SCIENTISTS: HOMEWORK 1

16 SEPTEMBER 2024 — L. T. D. NGUYÊN

Exercise 1

1. Describe the small category $C = C_{(\{0,1\},\leqslant)}$ corresponding to $\{0,1\}$ endowed with its usual order.

- **2.** Exhibit a functor $F: \mathcal{C} \to \mathbf{Set}$ (and justify that it is a functor) such that:
 - $F(0) = F(1) = \mathbb{N},$
 - there exist $A, B \in ob(\mathcal{C})$ and $f \in \mathcal{C}(A, B)$ such that F(f) is the function $n \mapsto n + 42$.

(Important : $* \in C(0,0)$ and $* \in C(0,1)$ are considered to be different morphisms because their target object is not the same; the functor is allowed to treat them differently. This also applies when the source object differs.)

3. Show that there does *not* exist any morphism g such that $F(g) = F(f) \circ F(f)$. In particular, why *cannot* we say that " $F(f \circ f) = F(f) \circ F(f)$ " even though F is a functor?

Exercise 2

Throughout this exercise, we fix some set *X*.

1. Let (A_1, \leq_1) and (A_2, \leq_2) be two preordered sets, and $\varphi_i \colon A_i \to X$ be a function for each $i \in \{1, 2\}$. Suppose that the following universal property holds for both i = 1 and i = 2:

for every preordered set (B, \leqslant) and function $f \colon B \to X$, there exists a unique monotone function $h \colon B \to A_i$ such that $f = \varphi_i \circ h$.

(Note that the functions with codomain X are not required to be monotone — that requirement would not make sense because we have not equipped X with a preorder.) Prove that (A_1, \leq_1) and (A_2, \leq_2) are isomorphic in **PreOrd**.

(Hint: adapt a proof from Lecture 1.)

2. Let \leq_{triv} be the *trivial preorder* on the set *X*, that is, let $x \leq_{\text{triv}} y$ be *always* true for $x, y \in X$. Show that (X, \leq_{triv}) , with the right choice of function φ , satisfies the universal property.

3. Can you express this as a universal morphism *from F* to *X* for some functor *F* seen in the lectures?

4. Give (without justification) a universal morphism *from X* to *F* for the same *F*.