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Overview

Basic results on finite automata (known + obvious extension)
⇓

“Reparameterisation” of MSO set queries on trees
⇓

A bunch of consequences for transducers outputting strings or trees

Asymptotic study of the growth rate of 𝑓 ∶ (strings or trees) → ℕ

growth[𝑓] ∶ 𝑛 ∈ ℕ ↦ max{𝑓(𝑡) ∣ |𝑡| ⩽ 𝑛}

Dichotomy phenomena:
polynomial Θ(𝑛𝑘), degree 𝑘 ∈ ℕ
exponential 2Θ(𝑛), degree +∞ by convention
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Ambiguity of nondeterministic finite automata

Ambiguity = number of runs of NFA on given input word; for example:

𝑎 𝑏

𝑎, 𝑏 𝑎, 𝑏 𝑎, 𝑏
counts matches for pattern …𝑎…𝑏…

Theorem (Weber & Seidl 1986)
deg(growth[ambiguity of𝒜 ]) is well-defined inℕ∪ {∞} (poly/exp dichotomy) and

• it is computable in time 𝑂(|𝒜 |3)
• deg < ∞ is decidable in time 𝑂(|𝒜 |2) |𝒜 | = |states| + |transitions|

These bounds are optimal: cf. Karolina Drabik’s talk this afternoon
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Ambiguity of nondeterministic finite tree automata

Ambiguity = number of runs of NFTA on given input tree
Theorem (Paul 2015)
deg(growth[ambiguity of any tree automaton]) is well-defined inℕ∪ {∞}

Theorem (new)

• it is computable in time 𝑂(|𝒜 |3) (same complexity as for words)
• deg < ∞ is decidable in time 𝑂(|𝒜 |2)

Proof similar to case of strings (next slide):

• branching plays limited role
• words⇝ one-hole contexts — e.g. 𝑎(𝑏(□), 𝑐)— in pumping patterns
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Ambiguity of nondeterministic finite automata: polynomial case

• Define degrees of states via pumping patterns, for example:

𝑞𝑢 𝑣 𝑤

𝑣 𝑣
⟹ deg(𝑞) ⩾ 1

• Easy: growth[ambiguity](𝑛) = Ω(𝑛𝑘) for 𝑘 = max(deg(co-reachable states))

• Matching upper bound 𝑂(𝑛𝑘): at most 𝑘 critical positions in a run

Definition
Critical position in a run = where the state degree increases

Lemma (consequence of existing results on finite ambiguity)

There are 𝑂(1) runs over a given word/tree with a given set of critical positions.
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From automata to Monadic Second-Order logic

nondeterminism ↔ choice of params 𝑋𝑖 in MSO formula 𝜑(𝑋1, … , 𝑋𝑚)
ambiguity ↔ number of satisfying choices = results of query 𝜑

Corollary

• 𝑘 = deg(growth[nb of results of query 𝜑]) ∈ ℕ ∪ {∞} well-def & computable

• If 𝑘 < ∞ then ∃ “reparameterisation” 𝑓𝑡 ∶ {results of 𝜑 on 𝑡} → {nodes in 𝑡}𝑘
which is finite-to-one and MSO-definable by some 𝜓(𝑋1, … , 𝑋𝑚􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍

2nd-order

, 𝑧1, … , 𝑧𝑘􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
1st-order

)

Proof: 𝑓𝑡(query result) = list of critical positions of corresponding run over 𝑡
finite-to-one due to previous lemma: |𝑓−1𝑡 ({some list})| = 𝑂(1)
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Conclusion

Thanks for your attention!

TheoretiCS submission successfully passed Phase 1
journal-first, never submitted to conference proceedings!

Computing polynomial degree of growth of NFA ambiguity (over trees)
⇓

𝑘-variable “reparameterisation” of MSO set queries of growth 𝑂(𝑛𝑘)
[Bojańczyk 2023]: case of 𝜑(𝑥1, … , 𝑥𝑚) on strings, using factorisation forests

⇓
Optimisation ofMSO set interpretations from trees (cf. next talk by Colcombet)

[Bojańczyk 2023]: case of MSO interpretations from strings a.k.a. polyregular functions
⇓

inter alia, results on asymptotics of macro tree transducers (cf. next² talk by Peyrat)
generalising [Engelfriet & Maneth 2000; Gallot, Maneth, Nakano & Peyrat 2024] w/ easier proofs
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