The structure of polynomial growth for tree automata/transducers and MSO set queries

Lê Thành Dũng (Tito) Nguyễn (Aix-Marseille Univ.) joint work with Paul Gallot (Univ. Bremen) & Nathan Lhote (AMU) Highlights of Logic, Games and Automata 2025 (Saarbrücken)

Overview

Basic results on finite automata (known + obvious extension) $\label{eq:known} \Downarrow$ "Reparameterisation" of MSO set queries on trees $\label{eq:known} \Downarrow$

A bunch of consequences for transducers outputting strings or trees

Overview

"Reparameterisation" of MSO set queries on trees

A bunch of consequences for transducers outputting strings or trees

Asymptotic study of the growth rate of $f : (strings or trees) \rightarrow \mathbb{N}$

$$\operatorname{growth}[f]: n \in \mathbb{N} \mapsto \max\{f(t) \mid |t| \le n\}$$

Dichotomy phenomena:

polynomial
$$\Theta(n^k)$$
, degree $k \in \mathbb{N}$ exponential $2^{\Theta(n)}$, degree $+\infty$ by convention

Overview

"Reparameterisation" of MSO set queries on trees

A bunch of consequences for transducers outputting strings or trees

Asymptotic study of the growth rate of $f : (strings or trees) \rightarrow \mathbb{N}$

$$\operatorname{growth}[f]: n \in \mathbb{N} \mapsto \max\{f(t) \mid |t| \le n\}$$

Dichotomy phenomena:

polynomial
$$\Theta(n^k)$$
, degree $k \in \mathbb{N}$ exponential $2^{\Theta(n)}$, degree $+\infty$ by convention

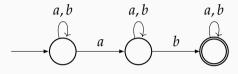
Ambiguity = number of runs of NFA on given input word; for example:

Ambiguity = number of runs of NFA on given input word; for example:

Theorem (Weber & Seidl 1986)

 $deg(growth[ambiguity\ of\ \mathcal{A}])\ is\ well-defined\ in\ \mathbb{N}\cup\{\infty\}\ (poly/exp\ dichotomy)$

Ambiguity = number of runs of NFA on given input word; for example:



counts matches for pattern ... $a \dots b \dots$

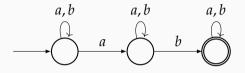
Theorem (Weber & Seidl 1986)

 $deg(growth[ambiguity\ of\ \mathcal{A}])$ is well-defined in $\mathbb{N}\cup\{\infty\}$ (poly/exp dichotomy) and

- it is computable in time $O(|\mathcal{A}|^3)$
- $\deg < \infty$ is decidable in time $O(|\mathcal{A}|^2)$

 $|\mathcal{A}| = |states| + |transitions|$

Ambiguity = number of runs of NFA on given input word; for example:



counts matches for pattern ... $a ext{ ... } b ext{ ... }$

Theorem (Weber & Seidl 1986)

 $deg(growth[ambiguity\ of\ \mathcal{A}])$ is well-defined in $\mathbb{N}\cup\{\infty\}$ (poly/exp dichotomy) and

- it is computable in time $O(|\mathcal{A}|^3)$
- $\deg < \infty$ is decidable in time $O(|\mathcal{A}|^2)$

 $|\mathcal{A}| = |states| + |transitions|$

These bounds are optimal: cf. Karolina Drabik's talk this afternoon

Ambiguity = number of runs of NFTA on given input tree

Theorem (Paul 2015)

 $deg(growth[\textit{ambiguity of any tree automaton}]) \textit{ is well-defined in } \mathbb{N} \cup \{\infty\}$

Theorem (new)

• it is computable in time $O(|\mathcal{A}|^3)$

(same complexity as for words)

• $\deg < \infty$ is decidable in time $O(|\mathcal{A}|^2)$

Ambiguity = number of runs of NFTA on given input tree

Theorem (Paul 2015)

deg(growth[ambiguity of any tree automaton]) is well-defined in $\mathbb{N} \cup \{\infty\}$

Theorem (new)

• it is computable in time $O(|\mathcal{A}|^3)$

(same complexity as for words)

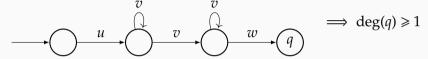
• $\deg < \infty$ is decidable in time $O(|\mathcal{A}|^2)$

Proof similar to case of strings (next slide):

- branching plays limited role
- words \rightsquigarrow one-hole contexts e.g. $a(b(\Box), c)$ in *pumping patterns*

Ambiguity of nondeterministic finite automata: polynomial case

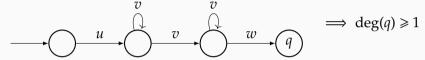
• Define *degrees of states* via pumping patterns, for example:



• Easy: growth[ambiguity](n) = $\Omega(n^k)$ for $k = \max(\deg(\text{co-reachable states}))$

Ambiguity of nondeterministic finite automata: polynomial case

• Define *degrees of states* via pumping patterns, for example:



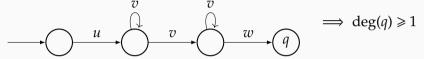
- Easy: growth[ambiguity](n) = $\Omega(n^k)$ for $k = \max(\deg(\text{co-reachable states}))$
- Matching upper bound $O(n^k)$: at most k critical positions in a run

Definition

Critical position in a run = where the state degree increases

Ambiguity of nondeterministic finite automata: polynomial case

• Define *degrees of states* via pumping patterns, for example:



- Easy: growth[ambiguity](n) = $\Omega(n^k)$ for $k = \max(\deg(\text{co-reachable states}))$
- Matching upper bound $O(n^k)$: at most k critical positions in a run

Definition

Critical position in a run = where the state degree increases

Lemma (consequence of existing results on finite ambiguity)

There are O(1) runs over a given word/tree with a given set of critical positions.

nondeterminism \leftrightarrow choice of params X_i in MSO formula $\varphi(X_1, \dots, X_m)$ ambiguity \leftrightarrow number of satisfying choices = results of query φ

nondeterminism \leftrightarrow choice of params X_i in MSO formula $\varphi(X_1, ..., X_m)$ ambiguity \leftrightarrow number of satisfying choices = results of query φ

Corollary

• $k = \deg(\operatorname{growth}[nb \ of \ results \ of \ query \ \varphi]) \in \mathbb{N} \cup \{\infty\} \ well-def \ \mathcal{E} \ computable$

nondeterminism \leftrightarrow choice of params X_i in MSO formula $\varphi(X_1, ..., X_m)$ ambiguity \leftrightarrow number of satisfying choices = results of query φ

Corollary

• $k = \deg(\operatorname{growth}[nb \ of \ results \ of \ query \ \varphi]) \in \mathbb{N} \cup \{\infty\} \ well-def \ \mathcal{E} \ computable$

 f_t (query result) = list of critical positions of corresponding run over t finite-to-one due to previous lemma: $|f_t^{-1}(\{\text{some list}\})| = O(1)$

nondeterminism \leftrightarrow choice of params X_i in MSO formula $\varphi(X_1, ..., X_m)$ ambiguity \leftrightarrow number of satisfying choices = results of query φ

Corollary

- $k = \deg(\operatorname{growth}[nb \ of \ results \ of \ query \ \varphi]) \in \mathbb{N} \cup \{\infty\} \ well-def \ \mathcal{E} \ computable$
- If $k < \infty$ then \exists "reparameterisation" f_t : {results of φ on t} \rightarrow {nodes in t}^k which is finite-to-one and MSO-definable by some $\psi(X_1, ..., X_m, z_1, ..., z_k)$ $\xrightarrow{2nd\text{-}order}$ 1st-order

<u>Proof:</u> f_t (query result) = list of critical positions of corresponding run over t finite-to-one due to previous lemma: $|f_t^{-1}(\{\text{some list}\})| = O(1)$

Computing polynomial degree of growth of NFA ambiguity (over trees) $\quad \ \ \, \downarrow$

k-variable "reparameterisation" of MSO set queries of growth $O(n^k)$

[Bojańczyk 2023]: case of $\varphi(x_1, \dots, x_m)$ on strings, using factorisation forests

Computing polynomial degree of growth of NFA ambiguity (over trees) $\downarrow \\ k\text{-variable "reparameterisation" of MSO set queries of growth } O(n^k)$ [Bojańczyk 2023]: case of $\varphi(x_1,\dots,x_m)$ on strings, using factorisation forests $\downarrow \downarrow$

Optimisation of *MSO* <u>set</u> *interpretations* from trees (cf. next talk by Colcombet) [Bojańczyk 2023]: case of MSO interpretations from strings a.k.a. polyregular functions

Computing polynomial degree of growth of NFA ambiguity (over trees) $\quad \ \ \, \downarrow$

k-variable "reparameterisation" of MSO set queries of growth $O(n^k)$

[Bojańczyk 2023]: case of $\varphi(x_1, \dots, x_m)$ on strings, using factorisation forests

 \Downarrow

Optimisation of MSO <u>set</u> interpretations from trees (cf. next talk by Colcombet)

 $[Boja\'{n}czyk\ 2023]: case\ of\ MSO\ interpretations\ from\ strings\ a.k.a.\ polyregular\ functions$

inter alia, results on asymptotics of *macro tree transducers* (cf. next² talk by Peyrat) generalising [Engelfriet & Maneth 2000; Gallot, Maneth, Nakano & Peyrat 2024] w/ easier proofs

TheoretiCS submission successfully passed Phase 1 journal-first, never submitted to conference proceedings!

Computing polynomial degree of growth of NFA ambiguity (over trees)

 $\mathbb{1}$

k-variable "reparameterisation" of MSO set queries of growth $O(n^k)$

[Bojańczyk 2023]: case of $\varphi(x_1, \dots, x_m)$ on strings, using factorisation forests

 \downarrow

Optimisation of MSO <u>set</u> interpretations from trees (cf. next talk by Colcombet)

[Bojańczyk 2023]: case of MSO interpretations from strings a.k.a. polyregular functions

inter alia, results on asymptotics of *macro tree transducers* (cf. next² talk by Peyrat) generalising [Engelfriet & Maneth 2000; Gallot, Maneth, Nakano & Peyrat 2024] w/ easier proofs

TheoretiCS submission successfully passed Phase 1 journal-first, never submitted to conference proceedings!

Computing polynomial degree of growth of NFA ambiguity (over trees)

⇓

k-variable "reparameterisation" of MSO set queries of growth $O(n^k)$

[Bojańczyk 2023]: case of $\varphi(x_1,\dots,x_m)$ on strings, using factorisation forests

 \parallel

Optimisation of MSO <u>set</u> interpretations from trees (cf. next talk by Colcombet)

 $[Boja\'{n}czyk\ 2023]: case\ of\ MSO\ interpretations\ from\ strings\ a.k.a.\ polyregular\ functions$

inter alia, results on asymptotics of *macro tree transducers* (cf. next² talk by Peyrat) generalising [Engelfriet & Maneth 2000; Gallot, Maneth, Nakano & Peyrat 2024] w/ easier proofs