
Slightly non-linear higher-order tree transducers

Lê Thành Dũng (Tito) Nguyễn (Aix-Marseille Univ.)
joint work with Gabriele Vanoni (IRIF, Paris)

STACS 2025 (Marseille online−−−−−−→ Jena)

1/12

• (Slightly non-)linear: as in linear logic
• higher-order: as in functional programming / 𝜆-calculus

• tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing 𝜆-terms vs. more conventional

First: conventional examples on strings

2/12

• (Slightly non-)linear: as in linear logic
• higher-order: as in functional programming / 𝜆-calculus
• tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing 𝜆-terms vs. more conventional

First: conventional examples on strings

2/12

• (Slightly non-)linear: as in linear logic
• higher-order: as in functional programming / 𝜆-calculus
• tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing 𝜆-terms vs. more conventional

First: conventional examples on strings

2/12

• (Slightly non-)linear: as in linear logic
• higher-order: as in functional programming / 𝜆-calculus
• tree transducers: automata for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing 𝜆-terms vs. more conventional

First: conventional examples on strings

2/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1 𝑞→1 𝑞→1𝑞←2𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1

𝑞→1 𝑞→1 𝑞→1𝑞←2𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1

𝑞→1

𝑞→1 𝑞→1𝑞←2𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1

𝑞→1

𝑞→1𝑞←2𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1 𝑞→1

𝑞→1

𝑞←2𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1 𝑞→1 𝑞→1

𝑞←2

𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1 𝑞→1 𝑞→1𝑞←2

𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1 𝑞→1 𝑞→1𝑞←2

𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”

⇒ so does their extension with string outputs

3/12

Two-way automata

Transitions: update finite state + move left/right depending on new state

Example: states 𝑄 = {𝑞→1 , 𝑞←2 , 𝑞←3 }, initial state 𝑞→1
𝑞→1 , (𝑎|𝑏) ↦ 𝑞→1 𝑞→1 , 𝑐 ↦ 𝑞←2 𝑞←2 , (𝑎|𝑏|𝑐) ↦ 𝑞←3 𝑞←3 , 𝑏 ↦ accept

▷ 𝑎 𝑏 𝑎 𝑐 ⋯ ◁

𝑞→1 𝑞→1 𝑞→1 𝑞→1𝑞←2

𝑞←3

Theorem (Rabin & Scott / Shepherdson 1959)
Two-way automata ≡ one-way automata (≡ regular languages)

⟶ rightfully belong to “finite-state computation”
⇒ so does their extension with string outputs

3/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎

𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏

𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐

𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐

𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐

𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏

𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁
↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎

#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎

#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎

#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎

#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎

#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#

𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏

𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎

𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐

𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐

𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐

𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎

𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏

#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏

#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏

#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏

#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏

#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#

𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐

𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏

𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏

𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏

𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers

are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

Two-way transducers are more powerful than one-way

Example: 𝑤1#…#𝑤𝑛 ⟼ 𝑤1 ⋅ reverse(𝑤1)#… #𝑤𝑛 ⋅ reverse(𝑤𝑛)

→

→

←

←

→

→

𝑥|𝑥

𝑥|𝑥

#, ◁|𝜀

#, ◁|𝜀

𝑥|𝑥

𝑥|𝑥

#, ▷|𝜀

#, ▷|𝜀

𝑥|𝜀

𝑥|𝜀

#|#

#|#

◁|𝜀

◁|𝜀

(𝑥 ∈ {𝑎, 𝑏, 𝑐})

▷ 𝑎 𝑏 𝑐 # 𝑏 𝑎 𝑐 # 𝑐 𝑏 ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: 𝑎𝑏𝑐𝑐𝑏𝑎#𝑏𝑎𝑐𝑐𝑎𝑏#𝑐𝑏𝑏𝑐

4/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝜀 𝑌 = 𝜀

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎
↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑎 𝑌 = 𝜀

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑐𝑎 𝑌 = 𝜀

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑎𝑐𝑎 𝑌 = 𝜀

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑏𝑎𝑐𝑎 𝑌 = 𝜀

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

𝑋 = 𝜀 𝑌 = 𝑏𝑎𝑐𝑎#

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

𝑋 = 𝑏 𝑌 = 𝑏𝑎𝑐𝑎#

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

𝑋 = 𝑐𝑏 𝑌 = 𝑏𝑎𝑐𝑎#

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

𝑋 = 𝜀 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏#

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

𝑋 = 𝑐 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏#

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

𝑋 = 𝑎𝑐 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏#

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑎𝑐 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏# mapReverse(…) = 𝑌𝑋 = 𝑏𝑎𝑐𝑎#𝑐𝑏#𝑎𝑐

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑎𝑐 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏# mapReverse(…) = 𝑌𝑋 = 𝑏𝑎𝑐𝑎#𝑐𝑏#𝑎𝑐

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑎𝑐 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏# mapReverse(…) = 𝑌𝑋 = 𝑏𝑎𝑐𝑎#𝑐𝑏#𝑎𝑐

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory?

LAMBDA: THE ULTIMATE

5/12

How to realize this with a one-way device?

mapReverse ∶ {𝑎, 𝑏, 𝑐, #}∗ → {𝑎, 𝑏, 𝑐, #}∗
𝑤1#…#𝑤𝑛 ↦ reverse(𝑤1)#… #reverse(𝑤𝑛)

𝑎 𝑐 𝑎 𝑏 # 𝑏 𝑐 # 𝑐 𝑎

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

𝑋 = 𝑎𝑐 𝑌 = 𝑏𝑎𝑐𝑎#𝑐𝑏# mapReverse(…) = 𝑌𝑋 = 𝑏𝑎𝑐𝑎#𝑐𝑏#𝑎𝑐

Important point
𝑋,𝑌 concatenable, but not inspectable (“if 𝑋[𝑘] = 𝑎 then…”)
⟶ control flow stays finite-state

What can you “reasonably” put in memory? LAMBDA: THE ULTIMATE 5/12

Higher-order tree automata / transducers: simply typed λ-calculus

Bottom-up tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept?(𝛿𝑎(𝛿𝑏(𝛿𝑐), 𝛿𝑐)) with 𝛿𝑎 ∶ 𝑄2 → 𝑄,…
Higher-order tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept? (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐) with 𝑡𝑎 ∶ 𝐴2 ⇒ 𝐴,…

𝑄 finite set vs. 𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵

Theorem (≃ Hillebrand & Kanellakis 1996 (Damm 1982?))
Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make 𝑜 a base type of non-inspectable trees

memory type 𝐴 = 𝑜𝑘 ▶ 𝑘-state top-down (sic!) tree transducer
𝐴 = (𝑜ℓ1 ⇒ 𝑜) ×⋯ × (𝑜ℓ𝑘 ⇒ 𝑜) ▶ 𝑘-state macro tree transducer, e.g. previous slide!

[Engelfriet & Vogler 1986], staple of “old-school” transducer theory

6/12

Higher-order tree automata / transducers: simply typed λ-calculus

Bottom-up tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept?(𝛿𝑎(𝛿𝑏(𝛿𝑐), 𝛿𝑐)) with 𝛿𝑎 ∶ 𝑄2 → 𝑄,…
Higher-order tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept? (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐) with 𝑡𝑎 ∶ 𝐴2 ⇒ 𝐴,…

𝑄 finite set vs. 𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵

Theorem (≃ Hillebrand & Kanellakis 1996 (Damm 1982?))
Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make 𝑜 a base type of non-inspectable trees

memory type 𝐴 = 𝑜𝑘 ▶ 𝑘-state top-down (sic!) tree transducer
𝐴 = (𝑜ℓ1 ⇒ 𝑜) ×⋯ × (𝑜ℓ𝑘 ⇒ 𝑜) ▶ 𝑘-state macro tree transducer, e.g. previous slide!

[Engelfriet & Vogler 1986], staple of “old-school” transducer theory

6/12

Higher-order tree automata / transducers: simply typed λ-calculus

Bottom-up tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept?(𝛿𝑎(𝛿𝑏(𝛿𝑐), 𝛿𝑐)) with 𝛿𝑎 ∶ 𝑄2 → 𝑄,…
Higher-order tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept? (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐) with 𝑡𝑎 ∶ 𝐴2 ⇒ 𝐴,…

𝑄 finite set vs. 𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵

Theorem (≃ Hillebrand & Kanellakis 1996 (Damm 1982?))
Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make 𝑜 a base type of non-inspectable trees

memory type 𝐴 = 𝑜𝑘 ▶ 𝑘-state top-down (sic!) tree transducer
𝐴 = (𝑜ℓ1 ⇒ 𝑜) ×⋯ × (𝑜ℓ𝑘 ⇒ 𝑜) ▶ 𝑘-state macro tree transducer, e.g. previous slide!

[Engelfriet & Vogler 1986], staple of “old-school” transducer theory

6/12

Higher-order tree automata / transducers: simply typed λ-calculus

Bottom-up tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept?(𝛿𝑎(𝛿𝑏(𝛿𝑐), 𝛿𝑐)) with 𝛿𝑎 ∶ 𝑄2 → 𝑄,…
Higher-order tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept? (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐) with 𝑡𝑎 ∶ 𝐴2 ⇒ 𝐴,…

𝑄 finite set vs. 𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵

Theorem (≃ Hillebrand & Kanellakis 1996 (Damm 1982?))
Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make 𝑜 a base type of non-inspectable trees

memory type 𝐴 = 𝑜𝑘 ▶ 𝑘-state top-down (sic!) tree transducer

𝐴 = (𝑜ℓ1 ⇒ 𝑜) ×⋯ × (𝑜ℓ𝑘 ⇒ 𝑜) ▶ 𝑘-state macro tree transducer, e.g. previous slide!

[Engelfriet & Vogler 1986], staple of “old-school” transducer theory

6/12

Higher-order tree automata / transducers: simply typed λ-calculus

Bottom-up tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept?(𝛿𝑎(𝛿𝑏(𝛿𝑐), 𝛿𝑐)) with 𝛿𝑎 ∶ 𝑄2 → 𝑄,…
Higher-order tree aut.: 𝑎(𝑏(𝑐), 𝑐) ↦ accept? (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐) with 𝑡𝑎 ∶ 𝐴2 ⇒ 𝐴,…

𝑄 finite set vs. 𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 × 𝐵 ∣ 𝐴 ⇒ 𝐵

Theorem (≃ Hillebrand & Kanellakis 1996 (Damm 1982?))
Higher-order tree automata recognize precisely regular tree languages.

Higher-order transducers: make 𝑜 a base type of non-inspectable trees

memory type 𝐴 = 𝑜𝑘 ▶ 𝑘-state top-down (sic!) tree transducer
𝐴 = (𝑜ℓ1 ⇒ 𝑜) ×⋯ × (𝑜ℓ𝑘 ⇒ 𝑜) ▶ 𝑘-state macro tree transducer, e.g. previous slide!

[Engelfriet & Vogler 1986], staple of “old-school” transducer theory

6/12

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
⟶ Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers ≡ two-way transducers (≡MSO transductions)

i.e. replace 𝐴 ⇒ 𝐵 by affine 𝐴 ⊸ 𝐵 which can only use 𝐴 once to produce 𝐵
≃ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in 𝜆-calculus]

Conjecture (N. & Pradic, ICALP’21)
Affine HO tree automata ⊊ regular tree languages

7/12

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
⟶ Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers ≡ two-way transducers (≡MSO transductions)

i.e. replace 𝐴 ⇒ 𝐵 by affine 𝐴 ⊸ 𝐵 which can only use 𝐴 once to produce 𝐵
≃ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in 𝜆-calculus]

Conjecture (N. & Pradic, ICALP’21)
Affine HO tree automata ⊊ regular tree languages

7/12

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
⟶ Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers ≡ two-way transducers (≡MSO transductions)

i.e. replace 𝐴 ⇒ 𝐵 by affine 𝐴 ⊸ 𝐵 which can only use 𝐴 once to produce 𝐵
≃ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in 𝜆-calculus]

Conjecture (N. & Pradic, ICALP’21)
Affine HO tree automata ⊊ regular tree languages

7/12

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express a lot of functions
⟶ Idea: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS’24])
Affine HO string transducers ≡ two-way transducers (≡MSO transductions)

i.e. replace 𝐴 ⇒ 𝐵 by affine 𝐴 ⊸ 𝐵 which can only use 𝐴 once to produce 𝐵
≃ “single use restrictions” in automata theory

[Original thm. in “implicit automata” POV: express functions internally in 𝜆-calculus]

Conjecture (N. & Pradic, ICALP’21)
Affine HO tree automata ⊊ regular tree languages

7/12

Results of the paper (1)

Tree-walking: generalization of two-way automata
1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers ⊆ reversible tree-walking aut./trans.

Almost affine HO tree automata/transducers ⊆ tree-walking aut./trans.

Inexpressivity conjecture from last slide follows from:
Theorem (Bojańczyk & Colcombet 2005)
Tree-walking automata ⊊ regular tree languages

Almost affine [Kanazawa]: the base type 𝑜 can be duplicated, but not the others
↔ “sharing” in the configuration graph of a tree-walking transducer

8/12

Results of the paper (1)

Tree-walking: generalization of two-way automata
1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers ⊆ reversible tree-walking aut./trans.

Almost affine HO tree automata/transducers ⊆ tree-walking aut./trans.

Inexpressivity conjecture from last slide follows from:
Theorem (Bojańczyk & Colcombet 2005)
Tree-walking automata ⊊ regular tree languages

Almost affine [Kanazawa]: the base type 𝑜 can be duplicated, but not the others
↔ “sharing” in the configuration graph of a tree-walking transducer

8/12

Results of the paper (1)

Tree-walking: generalization of two-way automata
1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers ⊆ reversible tree-walking aut./trans.
Almost affine HO tree automata/transducers ⊆ tree-walking aut./trans.

Inexpressivity conjecture from last slide follows from:
Theorem (Bojańczyk & Colcombet 2005)
Tree-walking automata ⊊ regular tree languages

Almost affine [Kanazawa]: the base type 𝑜 can be duplicated, but not the others
↔ “sharing” in the configuration graph of a tree-walking transducer

8/12

Results of the paper (2)

Lookaround = can inspect regular information at each node
= preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround ≡ MSO transductions
Almost affine HO tree trans. w/ lookaround ≡ unfolding ∘MSOT

Other way to overcome inexpressivity [N. & Pradic]: add &/⊕ types

𝐴 ⊗ 𝐵 (“multiplicative”) vs. 𝐴& 𝐵 (“additive”)

(better suited to “implicit automata” POV)

9/12

Results of the paper (2)

Lookaround = can inspect regular information at each node
= preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround ≡ MSO transductions
Almost affine HO tree trans. w/ lookaround ≡ unfolding ∘MSOT

Other way to overcome inexpressivity [N. & Pradic]: add &/⊕ types

𝐴 ⊗ 𝐵 (“multiplicative”) vs. 𝐴& 𝐵 (“additive”)

(better suited to “implicit automata” POV)

9/12

Results of the paper (3)

Thanks for your attention!

Exponential modality !𝐴 makes 𝐴 duplicable
𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 ⊸ 𝐵 ∣ !𝐴 (𝐴 ⇒ 𝐵 = !𝐴 ⊸ 𝐵)

Affine = !-free
Almost affine = ‘!’ only on 𝑜

Almost !-depth 1: ‘!’ only on almost affine types
Theorem (N. & Vanoni, this paper)
Almost !-depth 1 HO tree trans. w/ lookaround ≡ invisible pebble tree transducers

(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing 𝜆-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between GoI and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]

… but their category-theoretic version of GoI does not “scale” to almost !-depth 1

10/12

Results of the paper (3)

Thanks for your attention!

Exponential modality !𝐴 makes 𝐴 duplicable
𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 ⊸ 𝐵 ∣ !𝐴 (𝐴 ⇒ 𝐵 = !𝐴 ⊸ 𝐵)

Affine = !-free
Almost affine = ‘!’ only on 𝑜

Almost !-depth 1: ‘!’ only on almost affine types
Theorem (N. & Vanoni, this paper)
Almost !-depth 1 HO tree trans. w/ lookaround ≡ invisible pebble tree transducers

(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing 𝜆-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between GoI and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]

… but their category-theoretic version of GoI does not “scale” to almost !-depth 1

10/12

Results of the paper (3)

Thanks for your attention!

Exponential modality !𝐴 makes 𝐴 duplicable
𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 ⊸ 𝐵 ∣ !𝐴 (𝐴 ⇒ 𝐵 = !𝐴 ⊸ 𝐵)

Affine = !-free
Almost affine = ‘!’ only on 𝑜

Almost !-depth 1: ‘!’ only on almost affine types
Theorem (N. & Vanoni, this paper)
Almost !-depth 1 HO tree trans. w/ lookaround ≡ invisible pebble tree transducers

(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing 𝜆-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between GoI and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]

… but their category-theoretic version of GoI does not “scale” to almost !-depth 1

10/12

Results of the paper (3)

Thanks for your attention!

Exponential modality !𝐴 makes 𝐴 duplicable
𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 ⊸ 𝐵 ∣ !𝐴 (𝐴 ⇒ 𝐵 = !𝐴 ⊸ 𝐵)

Affine = !-free
Almost affine = ‘!’ only on 𝑜

Almost !-depth 1: ‘!’ only on almost affine types
Theorem (N. & Vanoni, this paper)
Almost !-depth 1 HO tree trans. w/ lookaround ≡ invisible pebble tree transducers

(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing 𝜆-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between GoI and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]

… but their category-theoretic version of GoI does not “scale” to almost !-depth 1
10/12

Results of the paper (3) Thanks for your attention!

Exponential modality !𝐴 makes 𝐴 duplicable
𝐴,𝐵 ∶∶= 𝑜 ∣ 𝐴 ⊸ 𝐵 ∣ !𝐴 (𝐴 ⇒ 𝐵 = !𝐴 ⊸ 𝐵)

Affine = !-free
Almost affine = ‘!’ only on 𝑜

Almost !-depth 1: ‘!’ only on almost affine types
Theorem (N. & Vanoni, this paper)
Almost !-depth 1 HO tree trans. w/ lookaround ≡ invisible pebble tree transducers

(tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS’07])

Main tool: Interaction Abstract Machine executing 𝜆-terms (coauthor’s expertise!),
automaton-like variant of Girard’s “Geometry of Interaction”

Connections between GoI and two-way automata [Hines 2003]
tree-walking transducers [Katsumata 2008]

… but their category-theoretic version of GoI does not “scale” to almost !-depth 1
10/12

Supplementary material for seminar
talk (+ explanations on blackboard)

Affine Interaction Abstract Machine rules

(𝐶[𝑡 𝑢], 𝑇) ↦ (𝐶[𝑡 𝑢], •⋅𝑇) (𝐶[𝑡 𝑢], •⋅𝑇) ↦ (𝐶[𝑡 𝑢], 𝑇)
(𝐶[𝑡 𝑢], 𝑇) ↦ (𝐶[𝑡 𝑢], ∘⋅𝑇) (𝐶[𝑡 𝑢], ∘⋅𝑇) ↦ (𝐶[𝑡 𝑢], 𝑇)

(𝐶[𝜆𝑥. 𝑡], 𝑇) ↦ (𝐶[𝜆𝑥. 𝑡], •⋅𝑇) (𝐶[𝜆𝑥. 𝑡], •⋅𝑇) ↦ (𝐶[𝜆𝑥. 𝑡], 𝑇)
(𝐶[𝜆𝑥.𝐷[𝑥]], 𝑇) ↦ (𝐶[𝜆𝑥.𝐷[𝑥]], ∘⋅𝑇) (𝐶[𝜆𝑥.𝐷[𝑥]], ∘⋅𝑇) ↦ (𝐶[𝜆𝑥.𝐷[𝑥]], 𝑇)
(𝐶[𝑐], •rk(𝑐)⋅𝑇) ↦ 𝑐(𝐶[𝑐], ∘⋅𝑇), (𝐶[𝑐], •⋅ ∘ ⋅𝑇), … , (𝐶[𝑐], •rk(𝑐)−1⋅ ∘ ⋅𝑇)

Example: 𝑡𝑎 = 𝜆ℓ. 𝜆𝑟. 𝜆𝑥. ℓ (𝑟 𝑥), 𝑡𝑏 = 𝜆𝑓. 𝜆𝑥. 𝑆 (𝑓 𝑥), 𝑡𝑐 = 𝑆, 𝑢 = 𝜆𝑓. 𝑓 0

(𝑣, 𝜀) ⇝ (𝑢 (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐), •) ⇝ ((𝜆𝑓. 𝑓 0) (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐), 𝜀) ⇝ ((𝜆𝑓. 𝑓 0) (…), •)

⇝ ((𝜆𝑓. 𝑓 0) (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐), ∘•) ⇝ (𝑢 (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐), •) ⇝2 (𝑢 (𝑡𝑎 (𝑡𝑏 𝑡𝑐) 𝑡𝑐), • • •)

Additional rules: almost affine case

(𝐶[let !𝑥 = 𝑢 in 𝑡], 𝑇) ↦ (𝐶[let !𝑥 = 𝑢 in 𝑡], 𝑇) (𝐶[!𝑡], 𝑇) ↦ (𝐶[!𝑡], 𝑇)
(𝐶[let !𝑥 = 𝑢 in 𝑡], 𝑇) ↦ (𝐶[let !𝑥 = 𝑢 in 𝑡], 𝑇)

(𝐶[let !𝑥 = 𝑢 in 𝐷[𝑥]], 𝑇) ↦ (𝐶[let !𝑥 = 𝑢 in 𝐷[𝑥]], 𝑇)

Important: last rule breaks duality/reversibility

Almost !-depth 1 case: add log (≃ boxes stack) to IAM configuration
+ single-stack simulation
≈ invisible pebble tree transducer

	Appendix
	Supplementary material for seminar talk (+ explanations on blackboard)

