Slightly non-linear higher-order tree transducers

Lê Thành Dũng (Tito) Nguyễn (Aix-Marseille Univ.) joint work with Gabriele Vanoni (IRIF, Paris)

STACS 2025 (Marseille $\xrightarrow{\text{online}}$ Jena)

- (Slightly non-)linear: as in *linear logic*
- higher-order: as in functional programming / *λ*-calculus

- (Slightly non-)linear: as in *linear logic*
- **higher-order**: as in functional programming / λ -calculus
- tree transducers: *automata* for tree-to-tree functions

- (Slightly non-)linear: as in *linear logic*
- **higher-order**: as in functional programming / λ -calculus
- tree transducers: *automata* for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing λ -terms vs. more conventional

- (Slightly non-)linear: as in *linear logic*
- **higher-order**: as in functional programming / λ -calculus
- tree transducers: *automata* for tree-to-tree functions

Comparing the expressive power of automata-like devices:

storing λ -terms vs. more conventional

First: conventional examples on strings

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

 $q_1^{\rightarrow}, (a|b) \mapsto q_1^{\rightarrow}$ $q_1^{\rightarrow}, c \mapsto q_2^{\leftarrow}$ $q_2^{\leftarrow}, (a|b|c) \mapsto q_3^{\leftarrow}$ $q_3^{\leftarrow}, b \mapsto \text{accept}$

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

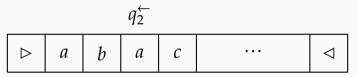
Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

 $q_1^{\rightarrow}, (a|b) \mapsto q_1^{\rightarrow} \qquad q_1^{\rightarrow}, c \mapsto q_2^{\leftarrow} \qquad q_2^{\leftarrow}, (a|b|c) \mapsto q_3^{\leftarrow} \qquad q_3^{\leftarrow}, b \mapsto \text{accept}$



Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

 $q_1^{\rightarrow}, (a|b) \mapsto q_1^{\rightarrow}$ $q_1^{\rightarrow}, c \mapsto q_2^{\leftarrow}$ $q_2^{\leftarrow}, (a|b|c) \mapsto q_3^{\leftarrow}$ $q_3^{\leftarrow}, b \mapsto \text{accept}$

\bigtriangleup	а	b	а	С	•••	\bigtriangledown

Theorem (Rabin & Scott / Shepherdson 1959)

Two-way automata \equiv *one-way automata* (\equiv *regular languages*)

 \rightarrow rightfully belong to "finite-state computation"

Transitions: update finite state + move left/right depending on new state Example: states $Q = \{q_1^{\rightarrow}, q_2^{\leftarrow}, q_3^{\leftarrow}\}$, initial state q_1^{\rightarrow}

 $q_1^{\rightarrow}, (a|b) \mapsto q_1^{\rightarrow}$ $q_1^{\rightarrow}, c \mapsto q_2^{\leftarrow}$ $q_2^{\leftarrow}, (a|b|c) \mapsto q_3^{\leftarrow}$ $q_3^{\leftarrow}, b \mapsto \text{accept}$

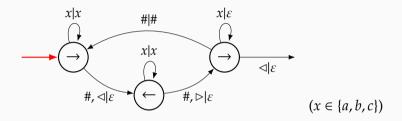
\triangleright	а	h	а	С	•••	\triangleleft
	и	υ	и	C		7

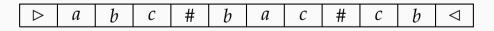
Theorem (Rabin & Scott / Shepherdson 1959)

Two-way automata \equiv *one-way automata* (\equiv *regular languages*)

 \rightarrow rightfully belong to "finite-state computation" \Rightarrow so does their extension with string outputs

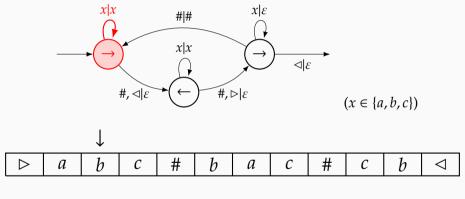
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$





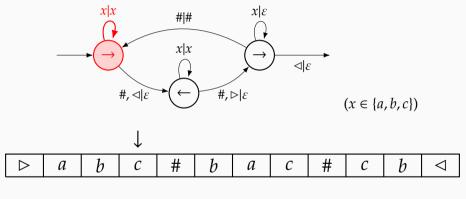
Output:



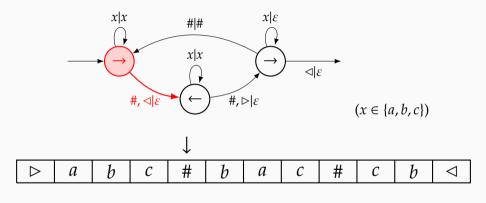


Output: a

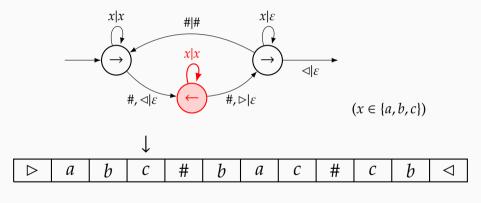
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



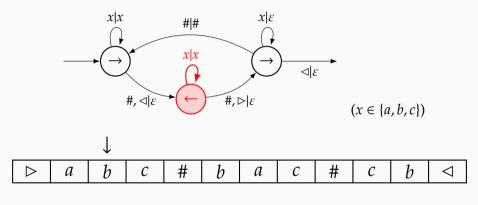
Output: ab



Output: *abc*

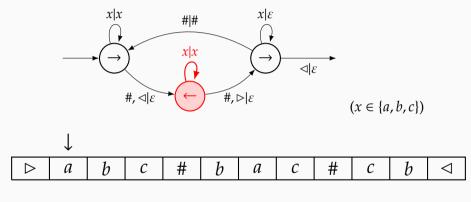


Output: *abc*

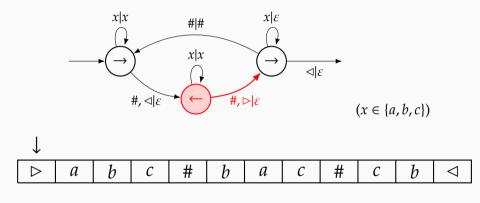


Output: *abcc*

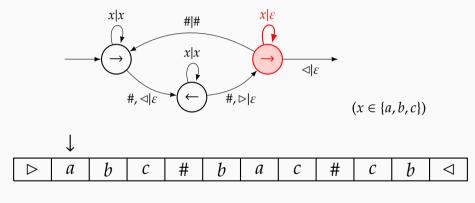
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



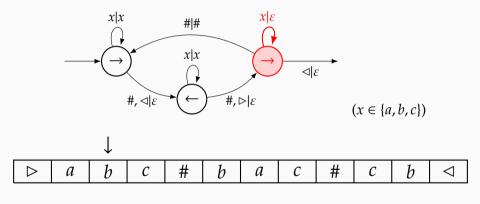
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



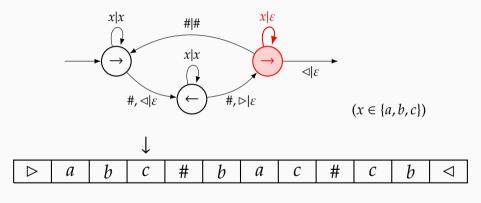
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



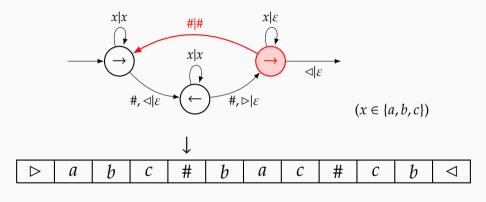
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



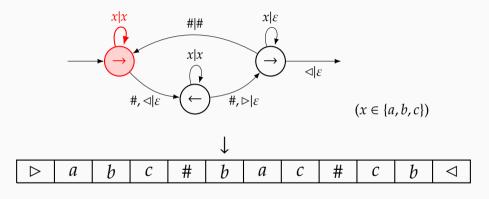
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



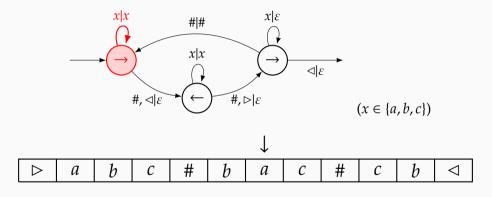
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



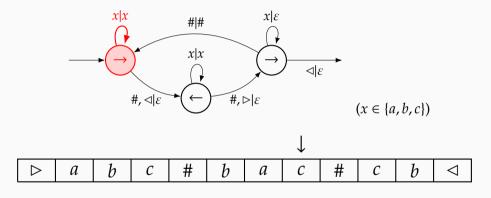
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



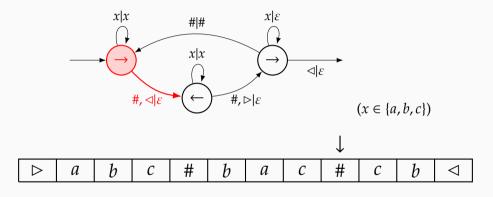
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$

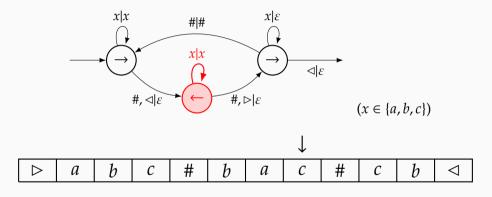


Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



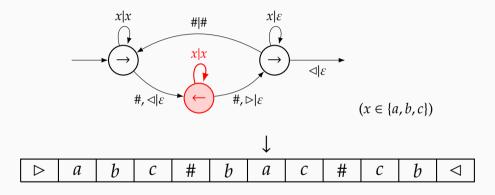
Output: *abccba#bac*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



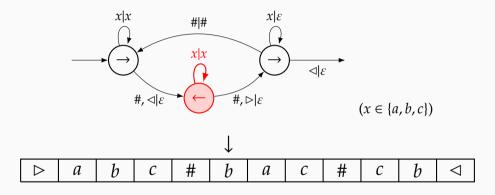
Output: *abccba#bac*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



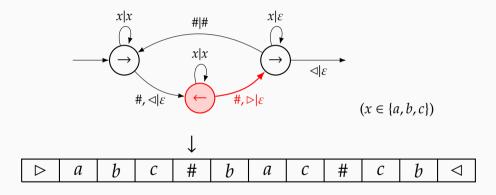
Output: *abccba#bacc*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



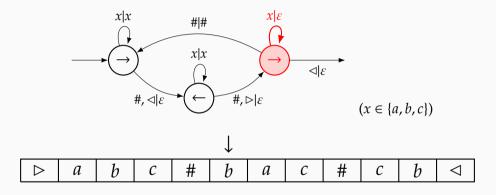
Output: abccba#bacca

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



Output: *abccba#baccab*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



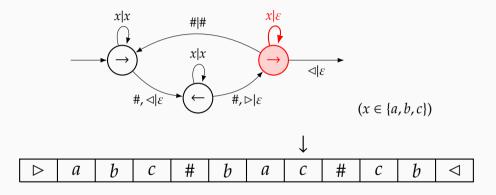
Output: *abccba#baccab*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



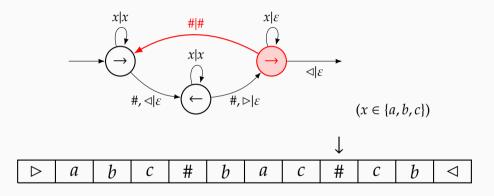
Output: *abccba#baccab*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



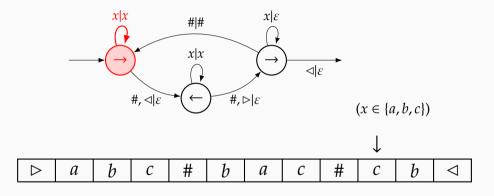
Output: *abccba#baccab*

Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$

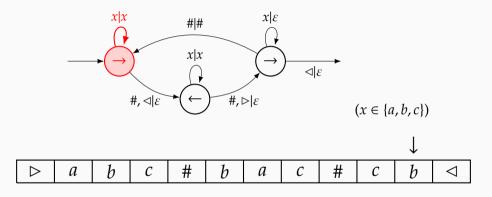


Output: *abccba#baccab*

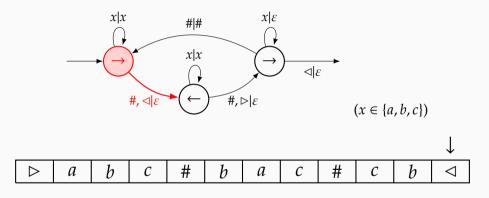
Example: $w_1 # \dots # w_n \longmapsto w_1 \cdot reverse(w_1) # \dots # w_n \cdot reverse(w_n)$



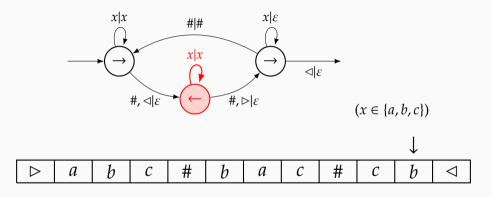
Output: *abccba#baccab#*



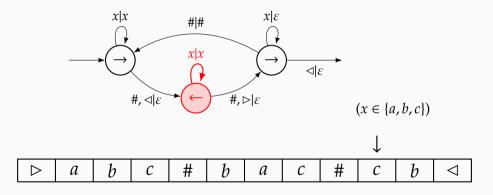
Output: *abccba#baccab#c*



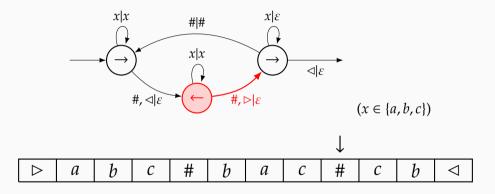
Output: *abccba#baccab#cb*



Output: *abccba#baccab#cb*



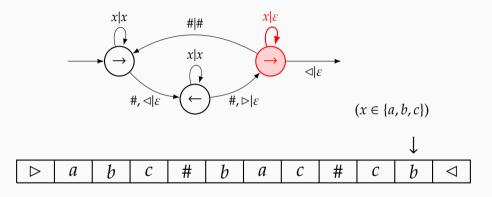
Output: *abccba#baccab#cbb*



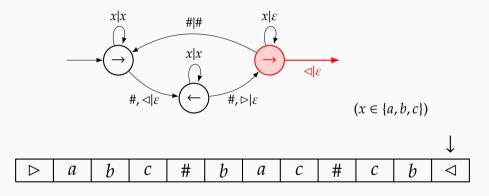
Output: *abccba#baccab#cbbc*



Output: *abccba#baccab#cbbc*

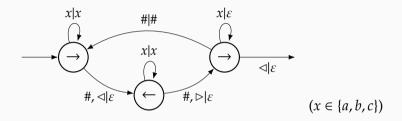


Output: *abccba#baccab#cbbc*



Output: *abccba#baccab#cbbc*

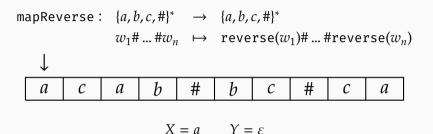
Two-way transducers are more powerful than one-way

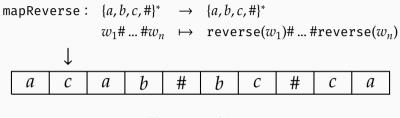


Output: *abccba#baccab#cbbc*

$$\begin{array}{rcl} \texttt{mapReverse:} & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\# \dots \# w_n & \mapsto & \texttt{reverse}(w_1)\# \dots \#\texttt{reverse}(w_n) \end{array}$$

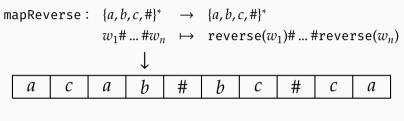
$$X = \varepsilon$$
 $Y = \varepsilon$



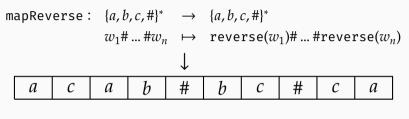


$$X = ca$$
 $Y = \varepsilon$

$$X = aca$$
 $Y = \varepsilon$



$$X = baca \qquad Y = \varepsilon$$

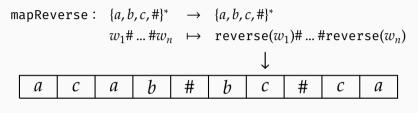


$$X = \varepsilon$$
 $Y = baca#$

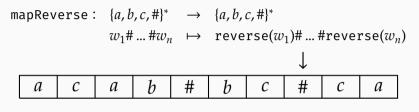
mapReverse:
$$\{a, b, c, \#\}^* \rightarrow \{a, b, c, \#\}^*$$

 $w_1 \# \dots \# w_n \mapsto \text{reverse}(w_1) \# \dots \# \text{reverse}(w_n)$
 \downarrow
 $a \ c \ a \ b \ \# \ b \ c \ \# \ c \ a$

$$X = b$$
 $Y = baca#$



$$X = cb$$
 $Y = baca#$



$$X = \varepsilon$$
 $Y = baca#cb#$

$$X = c$$
 $Y = baca#cb#$

$$X = ac$$
 $Y = baca#cb#$

mapReverse:
$$\{a, b, c, \#\}^* \rightarrow \{a, b, c, \#\}^*$$

 $w_1 \# \dots \# w_n \mapsto \text{reverse}(w_1) \# \dots \# \text{reverse}(w_n)$

X = ac Y = baca#cb# mapReverse(...) = YX = baca#cb#ac

 $\begin{array}{rcl} \text{mapReverse:} & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\dots \# w_n & \mapsto & \text{reverse}(w_1)\#\dots \# \text{reverse}(w_n) \end{array}$

$$X = ac$$
 $Y = baca#cb#$ mapReverse(...) = $YX = baca#cb#ac$

Important point

X, *Y* concatenable, but **not inspectable** ("if X[k] = a then...")

 \longrightarrow control flow stays finite-state

 $\begin{array}{rcl} \text{mapReverse:} & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\dots \# w_n & \mapsto & \text{reverse}(w_1)\#\dots \# \text{reverse}(w_n) \end{array}$

$$X = ac$$
 $Y = baca#cb#$ mapReverse(...) = $YX = baca#cb#ac$

Important point

X, *Y* concatenable, but **not inspectable** ("if X[k] = a then...")

 \rightarrow control flow stays finite-state

What can you "reasonably" put in memory?

 $\begin{array}{rcl} \text{mapReverse:} & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\dots \# w_n & \mapsto & \text{reverse}(w_1)\#\dots \# \text{reverse}(w_n) \end{array}$

$$X = ac$$
 $Y = baca#cb#$ mapReverse(...) = $YX = baca#cb#ac$

Important point

X, *Y* concatenable, but **not inspectable** ("if X[k] = a then...") \rightarrow control flow stays finite-state

What can you "reasonably" put in memory? LAMBDA: THE ULTIMATE

Bottom-up tree aut.: $a(b(c), c) \mapsto \text{accept}?(\delta_a(\delta_b(\delta_c), \delta_c)) \text{ with } \delta_a \colon Q^2 \to Q, \dots$ Higher-order tree aut.: $a(b(c), c) \mapsto \text{accept}?(t_a(t_b t_c) t_c) \text{ with } t_a \colon A^2 \Rightarrow A, \dots$

Q finite set vs. $A, B ::= o \mid A \times B \mid A \Rightarrow B$

Bottom-up tree aut.: $a(b(c), c) \mapsto \text{accept}?(\delta_a(\delta_b(\delta_c), \delta_c)) \text{ with } \delta_a \colon Q^2 \to Q, \dots$ Higher-order tree aut.: $a(b(c), c) \mapsto \text{accept}?(t_a(t_b t_c) t_c) \text{ with } t_a \colon A^2 \Rightarrow A, \dots$

Q finite set vs. $A, B ::= o \mid A \times B \mid A \Rightarrow B$

Theorem (~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Bottom-up tree aut.: $a(b(c), c) \mapsto \text{accept}?(\delta_a(\delta_b(\delta_c), \delta_c)) \text{ with } \delta_a \colon Q^2 \to Q, \dots$ Higher-order tree aut.: $a(b(c), c) \mapsto \text{accept}?(t_a(t_b t_c) t_c) \text{ with } t_a \colon A^2 \Rightarrow A, \dots$

Q finite set vs. *A*, *B* ::= $o \mid A \times B \mid A \Rightarrow B$

Theorem (~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order *transducers*: make *o* a base type of non-inspectable trees

Bottom-up tree aut.: $a(b(c), c) \mapsto \text{accept}?(\delta_a(\delta_b(\delta_c), \delta_c)) \text{ with } \delta_a \colon Q^2 \to Q, \dots$ Higher-order tree aut.: $a(b(c), c) \mapsto \text{accept}?(t_a(t_b t_c) t_c) \text{ with } t_a \colon A^2 \Rightarrow A, \dots$

Q finite set vs. $A, B ::= o \mid A \times B \mid A \Rightarrow B$

Theorem (~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order *transducers*: make *o* a base type of non-inspectable trees

memory type $A = o^k$ \blacktriangleright *k*-state *top-down* (sic!) *tree transducer*

Bottom-up tree aut.: $a(b(c), c) \mapsto \text{accept}?(\delta_a(\delta_b(\delta_c), \delta_c)) \text{ with } \delta_a \colon Q^2 \to Q, \dots$ Higher-order tree aut.: $a(b(c), c) \mapsto \text{accept}?(t_a(t_b t_c) t_c) \text{ with } t_a \colon A^2 \Rightarrow A, \dots$

Q finite set vs. $A, B ::= o \mid A \times B \mid A \Rightarrow B$

Theorem (~ Hillebrand & Kanellakis 1996 (Damm 1982?))

Higher-order tree automata recognize precisely regular tree languages.

Higher-order *transducers*: make *o* a base type of non-inspectable trees

memory type $A = o^k$ \blacktriangleright *k*-state *top-down* (sic!) *tree transducer* $A = (o^{\ell_1} \Rightarrow o) \times \cdots \times (o^{\ell_k} \Rightarrow o)$ \blacktriangleright *k*-state *macro tree transducer*, e.g. previous slide! [Engelfriet & Vogler 1986], staple of "old-school" transducer theory

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express *a lot* of functions

 \rightarrow **<u>Idea</u>**: restrict expressivity using type system!

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express *a lot* of functions

 \rightarrow <u>Idea</u>: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS'24]) Affine HO string transducers \equiv two-way transducers (\equiv MSO transductions)

i.e. replace $A \Rightarrow B$ by affine $A \multimap B$ which can only use A once to produce $B \simeq$ "single use restrictions" in automata theory

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express *a lot* of functions

 \rightarrow <u>Idea</u>: restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS'24]) *Affine HO string transducers* \equiv *two-way transducers* (\equiv *MSO transductions*)

i.e. replace $A \Rightarrow B$ by affine $A \multimap B$ which can only use A once to produce $B \simeq$ "single use restrictions" in automata theory

[Original thm. in "implicit automata" POV: express functions internally in λ -calculus]

Higher-order tree automata / transducers: affine types

Problem (feature?): HO tree transducers can express *a lot* of functions

 \rightarrow **Idea:** restrict expressivity using type system!

Theorem (claimed in my PhD; details: [Pradic & Price, MFPS'24]) *Affine HO string transducers* \equiv *two-way transducers* (\equiv *MSO transductions*)

i.e. replace $A \Rightarrow B$ by affine $A \multimap B$ which can only use A once to produce $B \simeq$ "single use restrictions" in automata theory

[Original thm. in "implicit automata" POV: express functions internally in λ -calculus]

Conjecture (N. & Pradic, ICALP'21)

Affine HO tree automata \subsetneq *regular tree languages*

Tree-walking: generalization of two-way automata

1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers \subseteq *reversible tree-walking aut./trans.*

Tree-walking: generalization of two-way automata

1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers \subseteq *reversible tree-walking aut./trans.*

Inexpressivity conjecture from last slide follows from:

Theorem (Bojańczyk & Colcombet 2005)

Tree-walking automata \subsetneq *regular tree languages*

Tree-walking: generalization of two-way automata

1 reading head moving around the tree in any direction

Theorem (N. & Vanoni, this paper)

Affine HO tree automata/transducers \subseteq *reversible tree-walking aut./trans.*

Almost affine HO tree automata/transducers \subseteq tree-walking aut./trans.

Inexpressivity conjecture from last slide follows from:

Theorem (Bojańczyk & Colcombet 2005)

Tree-walking automata \subsetneq *regular tree languages*

Almost affine [Kanazawa]: the base type o can be duplicated, but not the others \leftrightarrow "sharing" in the configuration graph of a tree-walking transducer

Lookaround = can inspect regular information at each node = preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround \equiv MSO transductions

Almost affine HO tree trans. w lookaround \equiv unfolding \circ MSOT

Lookaround = can inspect regular information at each node = preprocessing by very simple transducers / MSO relabeling

Corollary (new proof of [Kanazawa 2008; Gallot, Lemay & Salvati 2020])

Affine HO tree transducers with lookaround \equiv MSO transductionsAlmost affine HO tree trans. w/ lookaround \equiv unfolding \circ MSOT

Other way to overcome inexpressivity [N. & Pradic]: add &/⊕ types

 $A \otimes B$ ("multiplicative") vs. A & B ("additive")

(better suited to "implicit automata" POV)

Exponential modality !*A* makes *A* duplicable $A, B ::= o \mid A \multimap B \mid !A$ $(A \Rightarrow B = !A \multimap B)$ Affine = !-free Almost affine = '!' only on *o*

Exponential modality !A makes A duplicableAffine = !-free $A, B ::= o \mid A \multimap B \mid !A$ $(A \Rightarrow B = !A \multimap B)$ Almost affine = '!' only on o

Almost !-depth 1: '!' only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost !-depth 1 HO tree trans. w / lookaround \equiv invisible pebble tree transducers (tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS'07])

Exponential modality !A makes A duplicableAffine = !-free $A, B ::= o \mid A \multimap B \mid !A$ $(A \Rightarrow B = !A \multimap B)$ Almost affine = '!' only on o

Almost !-depth 1: '!' only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost !-depth 1 HO tree trans. w / lookaround \equiv invisible pebble tree transducers (tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS'07])

<u>Main tool:</u> Interaction Abstract Machine executing λ -terms (coauthor's expertise!), automaton-like variant of Girard's "Geometry of Interaction"

Exponential modality !A makes A duplicableAffine = !-free $A, B ::= o \mid A \multimap B \mid !A$ $(A \Rightarrow B = !A \multimap B)$ Almost affine = '!' only on o

Almost !-depth 1: '!' only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost !-depth 1 HO tree trans. w / lookaround \equiv invisible pebble tree transducers (tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS'07])

Main tool:Interaction Abstract Machine executing λ -terms (coauthor's expertise!),automaton-like variant of Girard's "Geometry of Interaction"

Connections between GoI and two-way automata [Hines 2003] tree-walking transducers [Katsumata 2008] ... but their category-theoretic version of GoI does not "scale" to almost !-depth 1

Exponential modality !A makes A duplicableAffine = !-free $A, B ::= o \mid A \multimap B \mid !A$ $(A \Rightarrow B = !A \multimap B)$ Almost affine = '!' only on o

Almost !-depth 1: '!' only on almost affine types

Theorem (N. & Vanoni, this paper)

Almost !-depth 1 HO tree trans. w / lookaround \equiv invisible pebble tree transducers (tree-walking + unbounded stack of marked positions [Engelfriet et al. PODS'07])

Main tool:Interaction Abstract Machine executing λ -terms (coauthor's expertise!),automaton-like variant of Girard's "Geometry of Interaction"

Connections between GoI and two-way automata [Hines 2003] tree-walking transducers [Katsumata 2008] ... but their category-theoretic version of GoI does not "scale" to almost !-depth 1 Supplementary material for seminar talk (+ explanations on blackboard)

Affine Interaction Abstract Machine rules

$$\begin{array}{rcl} (C[\underline{t}\,\underline{u}],T) &\mapsto & (C[\underline{t}\,u],\bullet T) & (C[\overline{t}\,u],\bullet T) &\mapsto & (C[\overline{t}\,u],T) \\ (C[t\,\overline{u}],T) &\mapsto & (C[\underline{t}\,u],\circ T) & (C[\overline{t}\,u],\circ T) &\mapsto & (C[t\,\underline{u}],T) \\ (C[\lambda x.\,\overline{t}],T) &\mapsto & (C[\overline{\lambda x.\,t}],\bullet T) & (C[\underline{\lambda x.\,t}],\bullet T) &\mapsto & (C[\lambda x.\,\underline{t}],T) \\ (C[\lambda x.\,D[\underline{x}]],T) &\mapsto & (C[\overline{\lambda x.\,D[x]}],\circ T) & (C[\underline{\lambda x.\,D[x]}],\circ T) &\mapsto & (C[\lambda x.\,D[\overline{x}]],T) \\ (C[\underline{c}],\bullet^{\mathrm{rk}(c)} T) &\mapsto & c\big((C[\overline{c}],\circ T),(C[\overline{c}],\bullet \cdot \circ T),\dots,(C[\overline{c}],\bullet^{\mathrm{rk}(c)-1}\cdot \circ T)\big) \end{array}$$

Example:
$$t_a = \lambda \ell$$
. λr . λx . ℓ ($r x$), $t_b = \lambda f$. λx . S ($f x$), $t_c = S$, $u = \lambda f$. $f 0$

$$(C[\underline{\mathsf{let}} \, \underline{x} = u \, \mathrm{in} \, \underline{t}], T) \mapsto (C[\underline{\mathsf{let}} \, \underline{x} = u \, \mathrm{in} \, \underline{t}], T) \qquad (C[\underline{\mathsf{lt}}], T) \mapsto (C[\underline{\mathsf{let}} \, \underline{x} = u \, \mathrm{in} \, \overline{t}], T) \\ (C[\underline{\mathsf{let}} \, \underline{x} = u \, \mathrm{in} \, \overline{t}], T) \mapsto (C[\underline{\mathsf{let}} \, \underline{x} = u \, \mathrm{in} \, t], T) \\ (C[\underline{\mathsf{let}} \, \underline{x} = u \, \mathrm{in} \, D[\underline{x}]], T) \mapsto (C[\underline{\mathsf{let}} \, \underline{x} = \underline{u} \, \mathrm{in} \, D[x]], T)$$

Important: last rule breaks duality/reversibility

Almost !-depth 1 case: add *log* (\simeq *boxes stack*) to IAM configuration + single-stack simulation \approx invisible pebble tree transducer