Computing the polynomial degree of size-to-height increase for macro tree transducers

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu — ÉNS Lyon joint work with Paul Gallot (Bremen) & Nathan Lhote (Aix–Marseille)

Séminaire automates, IRIF, Université Paris Cité — 7 juin 2024

Ranked trees = terms, e.g. $a(b(c), c) \in \text{Tree}(\{a: 2, b: 1, c: 0\})$

Macro tree transducers (*MTTs*): compute functions $f: \text{Tree}(\Sigma) \to \text{Tree}(\Gamma)$; automata-like / "finite-state computation" \leftrightsquigarrow hope for decidability properties

Ranked trees = terms, e.g. $a(b(c), c) \in \text{Tree}(\{a:2, b:1, c:0\})$

Macro tree transducers (*MTTs*): compute functions $f: \text{Tree}(\Sigma) \to \text{Tree}(\Gamma)$; automata-like / "finite-state computation" \leadsto hope for decidability properties

The following are decidable given an MTT computing f

• *linear size increase:* |f(t)| = O(|t|)? [Engelfriet & Maneth 2000] + in that case, f is definable by an "MSO transduction" (logical formalism)

Ranked trees = terms, e.g. $a(b(c), c) \in \text{Tree}(\{a:2, b:1, c:0\})$

Macro tree transducers (*MTTs*): compute functions $f: \text{Tree}(\Sigma) \to \text{Tree}(\Gamma)$; automata-like / "finite-state computation" \leadsto hope for decidability properties

The following are decidable given an MTT computing f

- *linear size increase:* |f(t)| = O(|t|)? [Engelfriet & Maneth 2000] + in that case, f is definable by an "MSO transduction" (logical formalism)
- $linear\ (size-to-)height\ increase:\ height(f(t)) = O(height(t))\ or\ O(|t|)\ ?$ [Gallot, Maneth, Nakano & Peyrat, ICALP'24]

Ranked trees = terms, e.g. $a(b(c), c) \in \text{Tree}(\{a:2, b:1, c:0\})$

Macro tree transducers (*MTTs*): compute functions $f: \text{Tree}(\Sigma) \to \text{Tree}(\Gamma)$; automata-like / "finite-state computation" \longleftrightarrow hope for decidability properties

The following are decidable given an MTT computing f

- *linear size increase:* |f(t)| = O(|t|)? [Engelfriet & Maneth 2000] + in that case, f is definable by an "MSO transduction" (logical formalism)
- $linear\ (size-to-)height\ increase$: height(f(t)) = O(height(t)) or O(|t|)? [Gallot, Maneth, Nakano & Peyrat, ICALP'24]

Today's theorem: polynomial size-to-height increase

inf {k | height(f(t)) = $O(|t|^k)$ } ∈ $\mathbb{N} \cup \{+\infty\}$ is computable.

inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}$ is computable from a macro tree transducer (MTT) computing f given as input.

In particular, this is $\leq 1 \iff \text{height}(f(t)) = O(|t|)$

 \longrightarrow generalizes decidability of linear size-to-height increase

inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}$ is computable from a macro tree transducer (MTT) computing f given as input.

In particular, this is $\leq 1 \iff \text{height}(f(t)) = O(|t|)$

- → generalizes decidability of linear size-to-height increase, with ≠ techniques:
- [Gallot, Maneth, Nakano & Peyrat, ICALP'24]: pumping directly on MTTs
 drawback: requires heavy formalism
- our proof: reduction to problems on simpler machines (tree automata)

inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}$ is computable from a *macro tree transducer* (MTT) computing f given as input.

In particular, this is $\leq 1 \iff \text{height}(f(t)) = O(|t|)$

- → generalizes decidability of linear size-to-height increase, with ≠ techniques:
- [Gallot, Maneth, Nakano & Peyrat, ICALP'24]: pumping directly on MTTs drawback: requires heavy formalism
- our proof: reduction to problems on simpler machines (tree automata)

But first: what is a macro tree transducer?? something from the 1980s

[Engelfriet & Vogler; independently, Courcelle & Franchi-Zannettacci]

inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}$ is computable from a *macro tree transducer* (MTT) computing f given as input.

In particular, this is $\leq 1 \iff \text{height}(f(t)) = O(|t|)$

- → generalizes decidability of linear size-to-height increase, with ≠ techniques:
- [Gallot, Maneth, Nakano & Peyrat, ICALP'24]: pumping directly on MTTs drawback: requires heavy formalism
- our proof: reduction to problems on simpler machines (tree automata)

But first: *what is a macro tree transducer??* something from the 1980s

[Engelfriet & Vogler; independently, Courcelle & Franchi-Zannettacci] before that, a special case: *top-down tree transducers*

Example ("conditional swap"¹): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) = t

 $^{^1} Inspired from \left[Alur \& \, D'Antoni \, 2012 \right]$

Example ("conditional swap"¹): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) = t

Rules: $q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle)$

¹Inspired from [Alur & D'Antoni 2012]

Example ("conditional swap"): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) = t

Rules:
$$q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle)$$

$$q_0\langle a(b(c),c)\rangle \to a(q_0\langle c\rangle,q_0\langle b(c)\rangle)$$

¹Inspired from [Alur & D'Antoni 2012]

Example ("conditional swap"): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) = t

Rules:

$$q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle) \qquad q_0\langle b(t)\rangle \to b(q_1\langle t\rangle)$$

$$q_0\langle b(t)\rangle \to b(q_1\langle t\rangle$$

$$q_0\langle a(b(c),c)\rangle \to a(q_0\langle c\rangle,q_0\langle b(c)\rangle)$$

¹Inspired from [Alur & D'Antoni 2012]

Example ("conditional swap"): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) = t

Rules:
$$q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle)$$
 $q_0\langle b(t)\rangle \to b(q_1\langle t\rangle)$

$$q_0\langle b(t)\rangle \to b(q_1\langle t\rangle)$$

$$q_0\langle a(b(c),c)\rangle \to a(q_0\langle c\rangle,q_0\langle b(c)\rangle) \to a(q_0\langle c\rangle,b(\textcolor{red}{q_1}\langle c\rangle))$$

¹Inspired from [Alur & D'Antoni 2012]

Example ("conditional swap"¹):
$$f(a(t, u)) = a(f(u), f(t))$$
, otherwise $f(t) = t$

Rules:
$$q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle)$$
 $q_0\langle b(t)\rangle \to b(q_1\langle t\rangle)$...
$$q_0\langle a(b(c),c)\rangle \to a(q_0\langle c\rangle, q_0\langle b(c)\rangle) \to a(q_0\langle c\rangle, b(q_1\langle c\rangle)) \to ... \to a(c,b(c))$$

¹Inspired from [Alur & D'Antoni 2012]

Example ("conditional swap"¹):
$$f(a(t,u)) = a(f(u), f(t))$$
, otherwise $f(t) = t$
Rules: $q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle)$ $q_0\langle b(t)\rangle \to b(q_1\langle t\rangle)$... $q_0\langle a(b(c),c)\rangle \to a(q_0\langle c\rangle, q_0\langle b(c)\rangle) \to a(q_0\langle c\rangle, b(q_1\langle c\rangle)) \to ... \to a(c,b(c))$
 $q_0\langle b(a(b(c),c))\rangle \to b(q_1\langle a(b(c),c)\rangle) \to ... \to b(a(b(c),c))$

¹Inspired from [Alur & D'Antoni 2012]

```
Example ("conditional swap"<sup>1</sup>): f(a(t,u)) = a(f(u), f(t)), otherwise f(t) = t

Rules: q_0\langle a(t,u)\rangle \to a(q_0\langle u\rangle, q_0\langle t\rangle) q_0\langle b(t)\rangle \to b(q_1\langle t\rangle) ... q_0\langle a(b(c),c)\rangle \to a(q_0\langle c\rangle, q_0\langle b(c)\rangle) \to a(q_0\langle c\rangle, b(q_1\langle c\rangle)) \to ... \to a(c,b(c))

q_0\langle b(a(b(c),c))\rangle \to b(q_1\langle a(b(c),c)\rangle) \to ... \to b(a(b(c),c))
```

The bottom-up view (≈ recursion vs "dynamic programming")

¹Inspired from [Alur & D'Antoni 2012]

Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

$$q_0\langle a(t,u)\rangle \to q_1\langle t\rangle\langle q_0\langle u\rangle\rangle$$
 $q_1\langle a(t,u)\rangle\langle x\rangle \to a(b(x),...)$

Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

$$q_0\langle a(t,u)\rangle \to q_1\langle t\rangle\langle q_0\langle u\rangle\rangle$$
 $q_1\langle a(t,u)\rangle\langle x\rangle \to a(b(x),...)$

Bottom-up view: registers store *tree contexts* = λ -terms taking trees as arguments = trees with "holes"

when reading
$$a$$
, set $X_1 := \lambda x$. $a(b(x), ...) = a(b(x), ...)$

Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

$$q_0\langle a(t,u)\rangle \to q_1\langle t\rangle (q_0\langle u\rangle)$$
 $q_1\langle a(t,u)\rangle (x) \to a(b(x),...)$

Bottom-up view: registers store $tree\ contexts = \lambda$ -terms taking trees as arguments = trees with "holes"

when reading
$$a$$
, set $X_1 := \lambda x$. $a(b(x), ...) = a(b(x), ...)$

Remark: concatenable strings are tree contexts \longrightarrow MTTs (1980s) are the "right" generalization of streaming string transducers [Alur & Černy 2010] to trees

$$ac \cdot ab \rightsquigarrow (\lambda x. a(c(x))) \circ (\lambda x. a(b(x)))$$

Macro tree transducers: examples and growth

In general: height(f(t)) = $2^{O(|t|)}$ – up to exponential size-to-height increase!

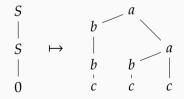
Using
$$q_1\langle 0\rangle(x) \to \overbrace{a(x,x)}^{\text{non-linear tree context}}$$
 and $q_1\langle S(t)\rangle(x) \to \overbrace{q_1\langle t\rangle(q_1\langle t\rangle(x))}^{\text{non-linear use of }q_1\langle t\rangle}$, one can compute: $S^n(0) \mapsto \text{complete binary tree of height } 2^n$

Macro tree transducers: examples and growth

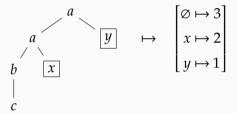
In general: $height(f(t)) = 2^{O(|t|)} - up$ to exponential size-to-height increase!

Using
$$q_1\langle 0\rangle(x)\to \widehat{a(x,x)}$$
 and $q_1\langle S(t)\rangle(x)\to \widehat{q_1\langle t\rangle(q_1\langle t\rangle(x))}$, one can compute: $S^n(0)\mapsto$ complete binary tree of height 2^n

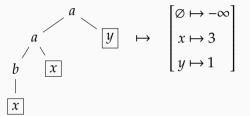
An example with linear (size-to-)height increase + $O(n^2)$ size increase:



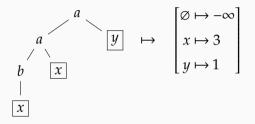
Tree context \mapsto for each variable x, highest depth of x-labeled nodes ∈ $\mathbb{N} \cup \{-\infty\}$



Tree context \mapsto for each variable x, highest depth of x-labeled nodes ∈ $\mathbb{N} \cup \{-\infty\}$

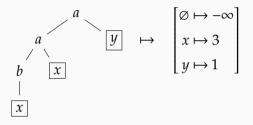


Tree context \mapsto for each variable x, highest depth of x-labeled nodes ∈ $\mathbb{N} \cup \{-\infty\}$



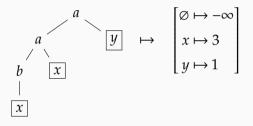
Operations on tree contexts, e.g. composition \rightsquigarrow combinations of $\{max, +\}$

Tree context \mapsto for each variable x, highest depth of x-labeled nodes ∈ $\mathbb{N} \cup \{-\infty\}$



Operations on tree contexts, e.g. composition \longleftrightarrow combinations of $\{\max, +\}$ \Longrightarrow Macro tree transducer \longleftrightarrow bottom-up register machine using $\{\max, +\}$ "cost register tree automaton"?

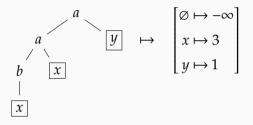
Tree context \mapsto for each variable x, highest depth of x-labeled nodes ∈ $\mathbb{N} \cup \{-\infty\}$



Operations on tree contexts, e.g. composition \longleftrightarrow combinations of $\{\max, +\}$ \Longrightarrow Macro tree transducer \longleftrightarrow bottom-up register machine using $\{\max, +\}$ "cost register tree automaton"?

Use tropical algebra?

Tree context \mapsto for each variable x, highest depth of x-labeled nodes ∈ $\mathbb{N} \cup \{-\infty\}$



Operations on tree contexts, e.g. composition \longleftrightarrow combinations of $\{\max, +\}$ \Longrightarrow Macro tree transducer \longleftrightarrow bottom-up register machine using $\{\max, +\}$ "cost register tree automaton"?

Use tropical algebra? No, we'll eliminate max

Our current problem

Study the growth rate of a "(\mathbb{N} , {max, +})-register tree automaton" \mathscr{A} .

Our current problem

Study the growth rate of a " $(\mathbb{N}, \{\max, +\})$ -register tree automaton" \mathscr{A} .

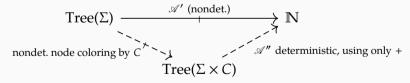
Trick: replace $\max(n, m)$ with a *nondeterministic choice* between n and m \longrightarrow nondet. $(\mathbb{N}, +)$ -register tree automaton \mathscr{A}' : Tree $(\Sigma) \to \mathscr{P}(\mathbb{N})$, such that $\mathscr{A}(t) = \max \mathscr{A}'(t)$ (thanks to monotonicity of +)

Our current problem

Study the growth rate of a " $(\mathbb{N}, \{\max, +\})$ -register tree automaton" \mathscr{A} .

Trick: replace $\max(n, m)$ with a nondeterministic choice between n and m \longrightarrow nondet. (\mathbb{N} , +)-register tree automaton \mathscr{A}' : Tree(Σ) $\to \mathscr{P}(\mathbb{N})$, such that $\mathscr{A}(t) = \max \mathscr{A}'(t)$ (thanks to monotonicity of +)

Finite set C of nondet. choices at each node \implies we can factorize:



Our current problem

Study the growth rate of a " $(\mathbb{N}, \{\max, +\})$ -register tree automaton" \mathscr{A} .

Trick: replace $\max(n, m)$ with a *nondeterministic choice* between n and m \longrightarrow nondet. (\mathbb{N} , +)-register tree automaton \mathscr{A}' : Tree(Σ) $\to \mathscr{P}(\mathbb{N})$, such that

$$\mathcal{A}(t) = \max \mathcal{A}'(t)$$
 (thanks to monotonicity of +)

Finite set *C* of nondet. choices at each node \implies we can factorize:

Fact:
$$\mathcal{A}(t) = O(|t|^k) \iff \mathcal{A}''(t'') = O(|t''|^k)$$
 for any fixed k

Replacing '+'-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a "(\mathbb{N} , {+})-register tree automaton" \mathscr{A}

Replacing '+'-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a " $(\mathbb{N}, \{+\})$ -register tree automaton" \mathscr{A}

One can translate such automata to $(\mathbb{N}, \times, +)$ -weighted tree automata, and:

Theorem(?): the following is computable (we have a proof sketch)

 $(\mathbb{N}, \times, +)$ -weighted automaton $\mathscr{B} \mapsto \inf \{ k \mid \mathscr{B}(t) = O(|t|^k) \} \in \mathbb{N} \cup \{ + \infty \}$

Replacing '+'-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a " $(\mathbb{N}, \{+\})$ -register tree automaton" \mathscr{A}

One can translate such automata to $(\mathbb{N}, \times, +)$ -weighted tree automata, and:

Theorem(?): the following is computable (we have a proof sketch)

 $(\mathbb{N}, \times, +)$ -weighted automaton $\mathscr{B} \mapsto \inf \{ k \mid \mathscr{B}(t) = O(|t|^k) \} \in \mathbb{N} \cup \{ + \infty \}$

Equivalently: compute polynomial degree of ambiguity of nondet. tree automata

- For strings, well-known, e.g. [Weber & Seidl 1991]
- For trees: not in the literature... almost done in Erik Paul's master thesis

 $((\mathbb{N},\{+\})\text{-register tree automata} = \text{ambiguity of "top-down tree-walking" automata})$

Theorem(?) [Gallot, Lhote & N., in preparation]

Given a macro tree transducer (MTT) computing a function f, one can compute inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}.$

In particular one can decide linear size-to-height increase: recover a result to appear at ICALP'24, using less technical arguments

Theorem(?) [Gallot, Lhote & N., in preparation]

Given a macro tree transducer (MTT) computing a function f, one can compute inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}.$

In particular one can decide linear size-to-height increase: recover a result to appear at ICALP'24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet's regular cost functions

Theorem(?) [Gallot, Lhote & N., in preparation]

Given a macro tree transducer (MTT) computing a function f, one can compute inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}.$

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP'24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet's regular cost functions

More using polynomially growing N-weighted tree automata

⇒ reprove "MTTs of linear size increase ⇔ MSO transductions" in an arguably much simpler way than [Engelfriet & Maneth 2000]

Theorem(?) [Gallot, Lhote & N., in preparation]

Given a macro tree transducer (MTT) computing a function f, one can compute inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}.$

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP'24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet's regular cost functions

More using polynomially growing N-weighted tree automata

- ⇒ dimension minimization for MSO set interpretations on trees
 - generalizing [Bojańczyk 2023] on polyregular string functions
- ⇒ reprove "MTTs of linear size increase ⇔ MSO transductions" in an arguably much simpler way than [Engelfriet & Maneth 2000]

Theorem(?) [Gallot, Lhote & N., in preparation]

Given a macro tree transducer (MTT) computing a function f, one can compute inf $\{k \mid \text{height}(f(t)) = O(|t|^k)\} \in \mathbb{N} \cup \{+\infty\}.$

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP'24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet's regular cost functions

More using polynomially growing N-weighted tree automata

- ⇒ dimension minimization for *MSO set interpretations* on trees generalizing [Bojańczyk 2023] on polyregular string functions
- ⇒ reprove "MTTs of linear size increase ⇔ MSO transductions"

in an arguably much simpler way than [Engelfriet & Maneth 2000]