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o [Gallot, Maneth, Nakano & Peyrat, ICALP’24]: pumping directly on MTTs
~w> drawback: requires heavy formalism

e our proof: reduction to problems on simpler machines (tree automata)

But first: what is a macro tree transducer?? something from the 1980s
[Engelfriet & Vogler; independently, Courcelle & Franchi-Zannettacci |
before that, a special case: top-down tree transducers
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Top-down tree transducers (DTOP)

Example (“conditional swap™): f(a(t, u)) = a(f(u), f(£)), otherwise f(f) = ¢

Rules:  qoca(t, u)) — a(qou), qo(t))  qgoCb(t)) — b(q:(£))
qo¢a(b(c), ¢)) = a(qo(c), 4o<b(c))) — alqolc), b(g1(c))) — ... = a(c, b(c))
qo¢b(a(b(c), 0))) — bg:{a(b(c),c))) — ... = bla(b(c), )

The bottom-up view (= recursion vs “dynamic programming”)

| Xo = X1 = b(a(b(c), ©))

b

| Xo = a(e, b(©), X; = a(b(c),c)
a(b(c), ¢)

Idea: process a subtree t bottom-up
— get “register values” X, = qo(t), ...

nspired from [Alur & D’Antoni 2012] 4/10
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Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

qofalt, u)) = qi{t)(@o(w))  qalt, w))(x) = a(b(x), -..)

Bottom-up view: registers store tree contexts = A-terms taking trees as arguments
= trees with “holes”

when reading 4, set X; := Ax. a(b(x), ...) = a(b(x)), ...)

Remark: concatenable strings are tree contexts — MTTs (1980s) are the “right”
generalization of streaming string transducers [ Alur & Cerny 2010] to trees

ac - ab ~~ (Ax. a(c(x))) o (Ax. a(b(x)))
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Macro tree transducers: examples and growth

In general: height(f(#)) = 2°0*) — up to exponential size-to-height increase!

non-linear tree context non-linear use of g1(t)

— —
Using 71{0)(x) — a(x, x) and g1(S(£))(x) — g1{t)(7:{t)(x)), one can compute:

§"(0) — complete binary tree of height 2"
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Macro tree transducers: examples and growth

In general: height(f(#)) = 2°0*) — up to exponential size-to-height increase!
non-linear tree context non-linear use of g1(t)
— —
Using 71{0)(x) — a(x, x) and g1(S(£))(x) — g1{t)(7:{t)(x)), one can compute:
§"(0) — complete binary tree of height 2"

An example with linear (size-to-)height increase + O(n?) size increase:

S a

| AN
S = ‘ a
| b 8|
0 (‘? 2? c
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Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

a @3
SN
a — X2
/ \
b y—1
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Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

/a\ @ > —00
a — x+—3
/ N\
|

Operations on tree contexts, e.g. composition mw combinations of {max, +}
= Macro tree transducer ~» bottom-up register machine using {max, +}

“cost register tree automaton”?

Use tropical algebra? No, we'll eliminate max
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Study the growth rate of a “(IN, {max, +})-register tree automaton” .o

Trick: replace max(n, m) with a nondeterministic choice between n and m
— nondet. (N, +)-register tree automaton .&/": Tree(X) — Z(IN), such that

(1) = max &/’ (t) (thanks to monotonicity of +)

Finite set C of nondet. choices at each node =— we can factorize:

K744 det.
Tree(X) (n(im =) ; N

~ -
~
-

-~
nondet. node coloring by C *~ ~1 P-4 ” deterministic, using only +

Tree(Z X C)

Fact: o/ (f) = O(tff) & &/ (") = O(t"[") for any fixed k
8/10
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Replacing ‘+’-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a “(IN, {+})-register tree automaton” .&/

One can translate such automata to (IN, X, +)-weighted tree automata, and:
Theorem(?): the following is computable (we have a proof sketch)
(N, X, +)-weighted automaton .% ~ inf {k | Z(t) = O(t)} € N U {+o0}

Equivalently: compute polynomial degree of ambiguity of nondet. tree automata

e For strings, well-known, e.g. [Weber & Seidl 1991 ]
e For trees: not in the literature... almost done in Erik Paul’s master thesis

((N, {+})-register tree automata = ambiguity of “top-down tree-walking” automata) 9/10
/



Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |
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In particular one can decide linear size-to-height increase:
recover a result to appear at ICALP’24, using less technical arguments

10/10



Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:
recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions

10/10



Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions

More using polynomially growing IN-weighted tree automata

= reprove “MTTs of linear size increase <& MSO transductions”

in an arguably much simpler way than [Engelfriet & Maneth 2000]

10/10



Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions
More using polynomially growing IN-weighted tree automata
= dimension minimization for MSO set interpretations on trees

generalizing [Bojariczyk 2023] on polyregular string functions
= reprove “MTTs of linear size increase <& MSO transductions”

in an arguably much simpler way than [Engelfriet & Maneth 2000]

10/10



Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions
More using polynomially growing IN-weighted tree automata
= dimension minimization for MSO set interpretations on trees

generalizing [Bojariczyk 2023] on polyregular string functions
= reprove “MTTs of linear size increase <& MSO transductions”

in an arguably much simpler way than [Engelfriet & Maneth 2000]

10/10



