Computing the polynomial degree of size-to-height increase
for macro tree transducers

Lé Thanh Diing (Tito) Nguyén — nltdanguyentito.eu — ENS Lyon
joint work with Paul Gallot (Bremen) & Nathan Lhote (Aix-Marseille)

Séminaire automates, IRIF, Université Paris Cité — 7 juin 2024

1/10

ranked alphabet

Ranked trees = terms, e.g. a(b(c),c) € Tree(fa:2,b:1, c: 0})

Macro tree transducers (MTTs): compute functions f: Tree(X) — Tree(I');
automata-like / “finite-state computation” ~»> hope for decidability properties

2/10

ranked alphabet

Ranked trees = terms, e.g. a(b(c),c) € Tree(fa:2,b:1, c: 0})

Macro tree transducers (MTTs): compute functions f: Tree(X) — Tree(I');
automata-like / “finite-state computation” ~»> hope for decidability properties

The following are decidable given an MTT computing f

e linear size increase: |f(t)| = O(|t]) ? [Engelfriet & Maneth 2000]
+ in that case, f is definable by an “MSO transduction” (logical formalism)

2/10

ranked alphabet

Ranked trees = terms, e.g. a(b(c),c) € Tree(fa:2,b:1, c: 0})

Macro tree transducers (MTTs): compute functions f: Tree(X) — Tree(I');
automata-like / “finite-state computation” ~»> hope for decidability properties

The following are decidable given an MTT computing f

e linear size increase: |f(t)| = O(|t]) ? [Engelfriet & Maneth 2000]
+ in that case, f is definable by an “MSO transduction” (logical formalism)

o linear (size-to-)height increase: height(f(t)) = O(height(t)) or O(|t]) ?
[Gallot, Maneth, Nakano & Peyrat, ICALP"24]

2/10

ranked alphabet

Ranked trees = terms, e.g. a(b(c),c) € Tree(fa:2,b:1, c: 0})

Macro tree transducers (MTTs): compute functions f: Tree(X) — Tree(I');
automata-like / “finite-state computation” ~»> hope for decidability properties

The following are decidable given an MTT computing f

e linear size increase: |f(t)| = O(|t]) ? [Engelfriet & Maneth 2000]
+ in that case, f is definable by an “MSO transduction” (logical formalism)
o linear (size-to-)height increase: height(f(t)) = O(height(t)) or O(|t]) ?
[Gallot, Maneth, Nakano & Peyrat, ICALP"24]

Today’s theorem: polynomial size-to-height increase

inf {k | height(f(t)) = O(tF)} € N U {+00} is computable.

2/10

Today’s theorem [Gallot, Lhote & N.]: polynomial size-to-height increase

inf {k | height(f(t)) = O(ItF)} € N U {+o0} is computable from a
macro tree transducer (MTT) computing f given as input.

In particular, thisis <1 <= height(f(t)) = O(|t])
— generalizes decidability of linear size-to-height increase

3/10

Today’s theorem [Gallot, Lhote & N.]: polynomial size-to-height increase

inf {k | height(f(t)) = O(ItF)} € N U {+o0} is computable from a
macro tree transducer (MTT) computing f given as input.

In particular, thisis <1 <= height(f(t)) = O(|t])
— generalizes decidability of linear size-to-height increase, with # techniques:

o [Gallot, Maneth, Nakano & Peyrat, ICALP’24]: pumping directly on MTTs
~w> drawback: requires heavy formalism

e our proof: reduction to problems on simpler machines (tree automata)

3/10

Today’s theorem [Gallot, Lhote & N.]: polynomial size-to-height increase

inf {k | height(f(t)) = O(ItF)} € N U {+o0} is computable from a
macro tree transducer (MTT) computing f given as input.

In particular, thisis <1 <= height(f(t)) = O(|t])
— generalizes decidability of linear size-to-height increase, with # techniques:

o [Gallot, Maneth, Nakano & Peyrat, ICALP’24]: pumping directly on MTTs
~w> drawback: requires heavy formalism

e our proof: reduction to problems on simpler machines (tree automata)

But first: what is a macro tree transducer?? something from the 1980s
[Engelfriet & Vogler; independently, Courcelle & Franchi-Zannettacci |

3/10

Today’s theorem [Gallot, Lhote & N.]: polynomial size-to-height increase

inf {k | height(f(t)) = O(ItF)} € N U {+o0} is computable from a
macro tree transducer (MTT) computing f given as input.

In particular, thisis <1 <= height(f(t)) = O(|t])
— generalizes decidability of linear size-to-height increase, with # techniques:

o [Gallot, Maneth, Nakano & Peyrat, ICALP’24]: pumping directly on MTTs
~w> drawback: requires heavy formalism

e our proof: reduction to problems on simpler machines (tree automata)

But first: what is a macro tree transducer?? something from the 1980s
[Engelfriet & Vogler; independently, Courcelle & Franchi-Zannettacci |
before that, a special case: top-down tree transducers

3/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =
Rules: qoa(t, u)) — a(qou), qot))

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =
Rules: qoa(t, u)) — a(qou), qot))
qota(b(c), €)) = alqolc), qo<b(c)))

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =
Rules: gola(t, u)) — a(qolu), go(t)) go(b(t)) = b(g:(t))
70¢a(b(c), c)) — algo{c), 4o{b(c)))

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =
Rules: goa(t, u)) — a(qo(u), qot)) qosb(t)) = b(g:(t))
qo¢a(b(c), ¢)) = a(qolc), golb(c))) — algolc), b(g1(c)))

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =
Rules: goa(t, u)) — a(qo(u), qot)) qosb(t)) = b(g:(t))
qo¢a(b(c), ¢)) = a(qo(c), 4o<b(c))) — alqolc), b(g1(c))) — ... = a(c, b(c))

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap”!): f(a(t, u)) = a(f(u), f(t)), otherwise f(t) =

Rules: go(a(t, u)) = al(go(u), qo(t)) qocb(t)) — blg:(t))
qo€a(b(c),)) = a(qo{c), qo¢b(c))) —= a(qo{c), b(gi{c))) = ... = a(c, b(c))
70¢b(a(b(c), ©))) = blg1a(b(c), 0))) = ... = b(a(b(c), c))

nspired from [Alur & D’Antoni 2012] 4/10

Top-down tree transducers (DTOP)

Example (“conditional swap™): f(a(t, u)) = a(f(u), f(£)), otherwise f(f) = ¢

Rules: qoca(t, u)) — a(qou), qo(t)) qgoCb(t)) — b(q:(£))
qo¢a(b(c), ¢)) = a(qo(c), 4o<b(c))) — alqolc), b(g1(c))) — ... = a(c, b(c))
qo¢b(a(b(c), 0))) — bg:{a(b(c),c))) — ... = bla(b(c),)

The bottom-up view (= recursion vs “dynamic programming”)

| Xo = X1 = b(a(b(c), ©))

b

| Xo = a(e, b(©), X; = a(b(c),c)
a(b(c), ¢)

Idea: process a subtree t bottom-up
— get “register values” X, = qo(t), ...

nspired from [Alur & D’Antoni 2012] 4/10

Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

qofalt, u)) = qi{t)(@o(w)) qalt, w))(x) = a(b(x), -..)

5/10

Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

qofalt, u)) = qi{t)(@o(w)) qalt, w))(x) = a(b(x), -..)

Bottom-up view: registers store tree contexts = A-terms taking trees as arguments
= trees with “holes”

when reading 4, set X; := Ax. a(b(x), ...) = a(b(x)), ...)

5/10

Macro tree transducers (MTTs)

Traditionally: top-down tree transducers with parameters, e.g.

qofalt, u)) = qi{t)(@o(w)) qalt, w))(x) = a(b(x), -..)

Bottom-up view: registers store tree contexts = A-terms taking trees as arguments
= trees with “holes”

when reading 4, set X; := Ax. a(b(x), ...) = a(b(x)), ...)

Remark: concatenable strings are tree contexts — MTTs (1980s) are the “right”
generalization of streaming string transducers [Alur & Cerny 2010] to trees

ac - ab ~~ (Ax. a(c(x))) o (Ax. a(b(x)))

5/10

Macro tree transducers: examples and growth

In general: height(f(#)) = 2°0*) — up to exponential size-to-height increase!

non-linear tree context non-linear use of g1(t)

— —
Using 71{0)(x) — a(x, x) and g1(S(£))(x) — g1{t)(7:{t)(x)), one can compute:

§"(0) — complete binary tree of height 2"

6/10

Macro tree transducers: examples and growth

In general: height(f(#)) = 2°0*) — up to exponential size-to-height increase!
non-linear tree context non-linear use of g1(t)
— —
Using 71{0)(x) — a(x, x) and g1(S(£))(x) — g1{t)(7:{t)(x)), one can compute:
§"(0) — complete binary tree of height 2"

An example with linear (size-to-)height increase + O(n?) size increase:

S a

| AN
S = ‘ a
| b 8|
0 (‘? 2? c

6/10

Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

a @3
SN
a — X2
/ \
b y—1

7/10

Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

/a\ @ > —00
a — x+—3
/ N\
|

7/10

Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

/a\ D > —00
a — x+—3
/ N\

Operations on tree contexts, e.g. composition mw combinations of {max, +}

7/10

Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

/a\ @ > —00
a — x+—3
/ N\
|

Operations on tree contexts, e.g. composition mw combinations of {max, +}
= Macro tree transducer ~» bottom-up register machine using {max, +}

“cost register tree automaton”?

7/10

Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

/a\ @ > —00
a — x+—3
/ N\

Operations on tree contexts, e.g. composition mw combinations of {max, +}
= Macro tree transducer ~» bottom-up register machine using {max, +}

“cost register tree automaton”?

Use tropical algebra?

7/10

Abstracting the output height of an MTT

Tree context — for each variable x, highest depth of x-labeled nodes € IN U {—co}

/a\ @ > —00
a — x+—3
/ N\
|

Operations on tree contexts, e.g. composition mw combinations of {max, +}
= Macro tree transducer ~» bottom-up register machine using {max, +}

“cost register tree automaton”?

Use tropical algebra? No, we'll eliminate max

7/10

Replacing max with nondeterminism

Our current problem

Study the growth rate of a “(IN, {max, +})-register tree automaton” .o

8/10

Replacing max with nondeterminism

Our current problem

Study the growth rate of a “(IN, {max, +})-register tree automaton” .o

Trick: replace max(n, m) with a nondeterministic choice between n and m
— nondet. (N, +)-register tree automaton .&/": Tree(X) — Z(IN), such that

(1) = max &/’ (t) (thanks to monotonicity of +)

8/10

Replacing max with nondeterminism

Our current problem

Study the growth rate of a “(IN, {max, +})-register tree automaton” .o

Trick: replace max(n, m) with a nondeterministic choice between n and m
— nondet. (N, +)-register tree automaton .&/": Tree(X) — Z(IN), such that

(1) = max &/’ (t) (thanks to monotonicity of +)

Finite set C of nondet. choices at each node = we can factorize:
o/’ (nondet.)

Tree(XZ) —— > N
- I
nondet. node coloring by C *~ ~1 - “ /" deterministic, using only +
Tree(Z X C)

8/10

Replacing max with nondeterminism

Our current problem

Study the growth rate of a “(IN, {max, +})-register tree automaton” .o

Trick: replace max(n, m) with a nondeterministic choice between n and m
— nondet. (N, +)-register tree automaton .&/": Tree(X) — Z(IN), such that

(1) = max &/’ (t) (thanks to monotonicity of +)

Finite set C of nondet. choices at each node =— we can factorize:

K744 det.
Tree(X) (n(im =) ; N

~ -
~
-

-~
nondet. node coloring by C *~ ~1 P-4 ” deterministic, using only +

Tree(Z X C)

Fact: o/ (f) = O(tff) & &/ (") = O(t"[") for any fixed k
8/10

Replacing ‘+’-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a “(IN, {+})-register tree automaton” .&/

9/10

Replacing ‘+’-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a “(IN, {+})-register tree automaton” .&/

One can translate such automata to (IN, X, +)-weighted tree automata, and:
Theorem(?): the following is computable (we have a proof sketch)
(N, X, +)-weighted automaton .% ~ inf {k | Z(t) = O(t)} € N U {+o0}

9/10

Replacing ‘+’-registers with weights / ambiguity

We have reduced our problem about MTT size-to-height increase to:

Our current problem

Study the growth rate of a “(IN, {+})-register tree automaton” .&/

One can translate such automata to (IN, X, +)-weighted tree automata, and:
Theorem(?): the following is computable (we have a proof sketch)
(N, X, +)-weighted automaton .% ~ inf {k | Z(t) = O(t)} € N U {+o0}

Equivalently: compute polynomial degree of ambiguity of nondet. tree automata

e For strings, well-known, e.g. [Weber & Seidl 1991]
e For trees: not in the literature... almost done in Erik Paul’s master thesis

((N, {+})-register tree automata = ambiguity of “top-down tree-walking” automata) 9/10
/

Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:
recover a result to appear at ICALP’24, using less technical arguments

10/10

Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:
recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions

10/10

Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions

More using polynomially growing IN-weighted tree automata

= reprove “MTTs of linear size increase <& MSO transductions”

in an arguably much simpler way than [Engelfriet & Maneth 2000]

10/10

Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions
More using polynomially growing IN-weighted tree automata
= dimension minimization for MSO set interpretations on trees

generalizing [Bojariczyk 2023] on polyregular string functions
= reprove “MTTs of linear size increase <& MSO transductions”

in an arguably much simpler way than [Engelfriet & Maneth 2000]

10/10

Conclusion

Theorem(?) [Gallot, Lhote & N., in preparation |

Given a macro tree transducer (MTT) computing a function f, one can compute
inf {k | height(f(t)) = O(|t|*)} € N U {+co}.

In particular one can decide linear size-to-height increase:

recover a result to appear at ICALP’24, using less technical arguments

Nondeterminism trick for max: inspired by Colcombet’s regular cost functions
More using polynomially growing IN-weighted tree automata
= dimension minimization for MSO set interpretations on trees

generalizing [Bojariczyk 2023] on polyregular string functions
= reprove “MTTs of linear size increase <& MSO transductions”

in an arguably much simpler way than [Engelfriet & Maneth 2000]

10/10

