Syntactically \& semantically regular languages of λ-terms coincide through logical relations

Lê Thành Dũng (Tito) Nguyễn — $n l t d$ Dnguyentito.eu - École normale supérieure de Lyon joint work with Vincent Moreau (IRIF, Université Paris Cité)

22 March 2024, séminaire Gallinette, LS2N / Inria Nantes

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm \& Berarducci 1985]
$\simeq f o l d _r i g h t$ on a list of characters (generalizable to any alphabet; Nat $=\operatorname{Str}_{\{1\}}$):

$$
\overline{011}=\lambda f_{0} \cdot \lambda f_{1} \cdot \lambda x \cdot f_{0}\left(f_{1}\left(f_{1} x\right)\right): \operatorname{Str}_{\{0,1\}}=(o \rightarrow o) \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o
$$

can also be "type-cast" to $\overline{011}[A]: \operatorname{Str}_{\{0,1\}}[A]=\operatorname{Str}_{\{0,1\}}\{0:=A\}$ for any simple type A

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm \& Berarducci 1985]
$\simeq f o l d _r i g h t$ on a list of characters (generalizable to any alphabet; Nat $=\operatorname{Str}_{\{1\}}$):

$$
\overline{011}=\lambda f_{0} \cdot \lambda f_{1} \cdot \lambda x \cdot f_{0}\left(f_{1}\left(f_{1} x\right)\right): \operatorname{Str}_{\{0,1\}}=(o \rightarrow o) \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o
$$

can also be "type-cast" to $\overline{011}[A]: \operatorname{Str}_{\{0,1\}}[A]=\operatorname{Str}_{\{0,1\}}\{0:=A\}$ for any simple type A
Simply typed λ-terms $t: \operatorname{Str}_{\{0,1\}}[A] \rightarrow$ Bool define languages $L \subseteq\{0,1\}^{*}$

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm \& Berarducci 1985]
$\simeq f o l d _r i g h t$ on a list of characters (generalizable to any alphabet; Nat $\left.=\operatorname{Str}_{\{1\}}\right)$:

$$
\overline{011}=\lambda f_{0} \cdot \lambda f_{1} \cdot \lambda x \cdot f_{0}\left(f_{1}\left(f_{1} x\right)\right): \operatorname{Str}_{\{0,1\}}=(o \rightarrow o) \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o
$$

can also be "type-cast" to $\overline{011}[A]: \operatorname{Str}_{\{0,1\}}[A]=\operatorname{Str}_{\{0,1\}}\{0:=A\}$ for any simple type A
Simply typed λ-terms $t: \operatorname{Str}_{\{\theta, 1\}}[A] \rightarrow$ Bool define languages $L \subseteq\{0,1\}^{*}$
Example: $t=\lambda$ s.s id not true : $\operatorname{Str}_{\{0,1\}}[\mathrm{Bool}] \rightarrow \operatorname{Bool}($ even number of 1 s$)$

$$
t \overline{011}[\mathrm{Bool}] \longrightarrow_{\beta} \overline{011}[\mathrm{Bool}] \text { id not true } \longrightarrow_{\beta} \text { id }(\text { not }(\text { not true })) \longrightarrow_{\beta} \text { true }
$$

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm \& Berarducci 1985]

$\simeq f o l d _r i g h t$ on a list of characters (generalizable to any alphabet; Nat $\left.=\operatorname{Str}_{\{1\}}\right)$:

$$
\overline{011}=\lambda f_{0} \cdot \lambda f_{1} \cdot \lambda x \cdot f_{0}\left(f_{1}\left(f_{1} x\right)\right): \operatorname{Str}_{\{0,1\}}=(o \rightarrow o) \rightarrow(o \rightarrow o) \rightarrow o \rightarrow o
$$

can also be "type-cast" to $\overline{011}[A]: \operatorname{Str}_{\{0,1\}}[A]=\operatorname{Str}_{\{0,1\}}\{0:=A\}$ for any simple type A
Simply typed λ-terms $t: \operatorname{Str}_{\{\theta, 1\}}[A] \rightarrow$ Bool define languages $L \subseteq\{0,1\}^{*}$
Example: $t=\lambda$ s.s id not true : $\operatorname{Str}_{\{0,1\}}[\mathrm{Bool}] \rightarrow \mathrm{Bool}($ even number of 1 s$)$

$$
t \overline{011}[\mathrm{Bool}] \longrightarrow_{\beta} \overline{011}[\mathrm{Bool}] \text { id not true } \longrightarrow_{\beta} \text { id }\left(\text { not }(\text { not true) }) \longrightarrow_{\beta}\right. \text { true }
$$

Theorem (Hillebrand \& Kanellakis 1996)

All regular languages, and only those, can be defined this way.
i.e. "syntactically regular" lang. $\subseteq\left\{u \mid u: \operatorname{Str}_{\{0,1\}}\right\} /\left(=_{\beta \eta}\right) \Longleftrightarrow$ regular lang. $\subseteq\{0,1\}^{*}$

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

- regular expressions: $0 *(10 * 10 *) *=$ "only 0 s and 1 s \& even number of 1 s "
- finite automata (DFA/NFA): e.g. drawing below

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

- regular expressions: $0 *(10 * 10 *) *=$ "only 0 s and 1 s \& even number of 1 s "
- finite automata (DFA/NFA)
- algebraic definition below (very close to DFA), e.g. $M=\mathbb{Z} /(2)$

Theorem (classical - attributed to Myhill by [Rabin \& Scott 1958])

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite monoid } M \rightarrow\{y e s, n o\}
$$

\rightsquigarrow compositional (as in denotational semantics!) and finitary interpretation of strings

Recognizing languages of simply typed λ-terms via semantics

Naive set-theoretic interpretation of simply typed λ-terms

$$
\begin{aligned}
\llbracket o \rrbracket_{Q} & =Q \text { (an arbitrary set) } \\
\llbracket A \rightarrow B \rrbracket_{Q} & =\llbracket A \rrbracket_{Q} \rightarrow \llbracket B \rrbracket_{Q}=\llbracket B \rrbracket_{Q}^{\llbracket A \rrbracket_{Q}} \quad t: A \Longrightarrow \llbracket t \rrbracket_{Q} \in \llbracket A \rrbracket_{Q}
\end{aligned}
$$

- Always compositional by def., e.g. $\llbracket t u \rrbracket_{Q}=\llbracket t \rrbracket_{Q}\left(\llbracket u \rrbracket_{Q}\right)+$ invariant $\bmod ={ }_{\beta \eta}$
- Q finite \Longrightarrow every $\llbracket A \rrbracket_{Q}$ finite

Recognizing languages of simply typed λ-terms via semantics

Naive set-theoretic interpretation of simply typed λ-terms

$$
\begin{aligned}
\llbracket o \rrbracket_{Q} & =Q \text { (an arbitrary set) } \\
\llbracket A \rightarrow B \rrbracket_{Q} & =\llbracket A \rrbracket_{Q} \rightarrow \llbracket B \rrbracket_{Q}=\llbracket B \rrbracket_{Q}^{\llbracket A \rrbracket_{Q}} \quad t: A \Longrightarrow \llbracket t \rrbracket_{Q} \in \llbracket A \rrbracket_{Q}
\end{aligned}
$$

- Always compositional by def., e.g. $\llbracket t u \rrbracket_{Q}=\llbracket t \rrbracket_{Q}\left(\llbracket u \rrbracket_{Q}\right)+$ invariant $\bmod ={ }_{\beta \eta}$
- Q finite \Longrightarrow every $\llbracket A \rrbracket_{Q}$ finite

Definition (Regular languages of λ-terms of type A [Salvati 2009])

$$
\{t \mid t: A\} /\left(==_{\beta \eta}\right) \xrightarrow{\llbracket-\rrbracket_{Q}} \llbracket A \rrbracket_{Q} \text { where } Q \text { is a chosen finite set } \rightarrow\{\text { yes, no }\}
$$

$\llbracket \bar{w} \rrbracket_{Q} \in \llbracket S \operatorname{tr}_{\Sigma} \rrbracket_{Q} \cong$ results of all runs of DFAs with states Q on rev(w) (via fold_right): "semantically regular" (à la Salvati) lang. at type $\operatorname{Str}_{\Sigma} \underbrace{\Longrightarrow}$ regular lang. over Σ^{*} converse also holds (easy)

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a "language" $\{t \mid t: A\} /\left(={ }_{\beta \eta}\right) \rightarrow\{$ yes, no $\}$)
Semantically regular: factors through naive set semantics $\llbracket-\rrbracket_{Q}$ for Q finite [Salvati 2009] Syntactically regular: defined by some term of type $A[B] \rightarrow \mathrm{Bool}$
inspired by [Hillebrand \& Kanellakis 1996]

For $A=\operatorname{Str}_{\Sigma}$, both equivalent to regular languages over $\Sigma^{*} \rightsquigarrow$ robust/canonical notion! many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ...

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a "language" $\{t \mid t: A\} /\left(={ }_{\beta \eta}\right) \rightarrow\{$ yes, no $\}$)
Semantically regular: factors through naive set semantics $\llbracket-\rrbracket_{Q}$ for Q finite [Salvati 2009] Syntactically regular: defined by some term of type $A[B] \rightarrow$ Bool
inspired by [Hillebrand \& Kanellakis 1996]

For $A=\operatorname{Str}_{\Sigma}$, both equivalent to regular languages over $\Sigma^{*} \rightsquigarrow$ robust/canonical notion! many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ... Are regular languages of simply typed λ-terms a robust notion?

- syntactically reg. \Longleftrightarrow semantically reg. $\forall A$?
- other definitions?

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a "language" $\{t \mid t: A\} /\left(={ }_{\beta \eta}\right) \rightarrow\{$ yes, no $\}$)
Semantically regular: factors through naive set semantics $\llbracket-\rrbracket_{Q}$ for Q finite [Salvati 2009] Syntactically regular: defined by some term of type $A[B] \rightarrow$ Bool
inspired by [Hillebrand \& Kanellakis 1996]

For $A=\operatorname{Str}_{\Sigma}$, both equivalent to regular languages over $\Sigma^{*} \rightsquigarrow$ robust/canonical notion! many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ... Are regular languages of simply typed λ-terms a robust notion?

- syntactically reg. \Longleftrightarrow semantically reg. $\forall A$? Yes! [Moreau \& N., CSL'24]
- other definitions?

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a "language" $\{t \mid t: A\} /\left(={ }_{\beta \eta}\right) \rightarrow\{$ yes, no $\}$)
Semantically regular: factors through naive set semantics $\llbracket-\rrbracket_{Q}$ for Q finite [Salvati 2009] Syntactically regular: defined by some term of type $A[B] \rightarrow$ Bool
inspired by [Hillebrand \& Kanellakis 1996]

For $A=\operatorname{Str}_{\Sigma}$, both equivalent to regular languages over $\Sigma^{*} \rightsquigarrow$ robust/canonical notion! many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ... Are regular languages of simply typed λ-terms a robust notion?

- syntactically reg. \Longleftrightarrow semantically reg. $\forall A$? Yes! [Moreau \& N., CSL'24]
- other definitions? some other finite semantics, e.g. finite Scott domains [Salvati]

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a "language" $\{t \mid t: A\} /\left(={ }_{\beta \eta}\right) \rightarrow\{$ yes, no $\}$)
Semantically regular: factors through naive set semantics $\llbracket-\rrbracket_{Q}$ for Q finite [Salvati 2009] Syntactically regular: defined by some term of type $A[B] \rightarrow$ Bool
inspired by [Hillebrand \& Kanellakis 1996]

For $A=\operatorname{Str}_{\Sigma}$, both equivalent to regular languages over $\Sigma^{*} \rightsquigarrow$ robust/canonical notion! many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ...

Are regular languages of simply typed λ-terms a robust notion?

- syntactically reg. \Longleftrightarrow semantically reg. $\forall A$? Yes! [Moreau \& N., CSL'24]
- other definitions? some other finite semantics, e.g. finite Scott domains [Salvati]
- Statman's finite completeness theorem = regularity of singleton languages
- applications to categorial grammars, higher-order matching, ... cf. Salvati's HDR

Syntactically implies semantically regular

Proof.

Fix $t: A[B] \rightarrow$ Bool. Choose $Q=\{0,1\}$ so that \llbracket true $\rrbracket_{Q} \neq \llbracket f a l s e \rrbracket_{Q}$.

$$
\forall u: A, \operatorname{tu}[B] \rightarrow_{\beta}^{*} \operatorname{true} \Longleftrightarrow \llbracket t u[B] \rrbracket_{Q}=\llbracket t \rrbracket_{Q}\left(\llbracket u[B] \rrbracket_{Q}\right)=\llbracket \operatorname{true} \rrbracket_{Q}
$$

Since $\llbracket u[B] \rrbracket_{Q}=\llbracket u \rrbracket_{\llbracket B \rrbracket_{Q^{\prime}}}$, the language defined by t factors as

$$
\{u \mid u: A\} /\left(=_{\beta \eta}\right) \xrightarrow{\llbracket-\rrbracket_{\left[B \rrbracket_{Q}\right.}} \llbracket A \rrbracket_{\llbracket B \rrbracket_{Q}}=\llbracket A[B] \rrbracket_{Q} \xrightarrow{\llbracket t \rrbracket_{Q}(-)=\llbracket t r u \rrbracket_{Q} ?}\{\text { yes }, \text { no }\}
$$

Syntactically implies semantically regular

Proof.

Fix $t: A[B] \rightarrow$ Bool. Choose $Q=\{0,1\}$ so that \llbracket true $\rrbracket_{Q} \neq \llbracket$ false \rrbracket_{Q}.

$$
\forall u: A, t u[B] \rightarrow_{\beta}^{*} \operatorname{true} \Longleftrightarrow \llbracket t u[B] \rrbracket_{Q}=\llbracket t \rrbracket_{Q}\left(\llbracket u[B] \rrbracket_{Q}\right)=\llbracket \operatorname{true} \rrbracket_{Q}
$$

Since $\llbracket u[B] \rrbracket_{Q}=\llbracket u \rrbracket_{\llbracket B \rrbracket_{Q^{\prime}}}$, the language defined by t factors as

$$
\{u \mid u: A\} /\left(={ }_{\beta \eta}\right) \xrightarrow{\llbracket-\rrbracket_{[B]_{Q}}} \llbracket A \rrbracket_{\llbracket B \rrbracket_{Q}}=\llbracket A[B] \rrbracket_{Q} \xrightarrow{\llbracket t \rrbracket_{Q}(-)=\llbracket t r u \rrbracket_{Q} ?}\{\text { yes, no }\}
$$

- this is the "hard" direction of "syntactically reg. at $\operatorname{Str}_{\Sigma} \Longleftrightarrow$ reg. over Σ^{*} " [HK96] becomes easy once you know you should go through finite semantics
- works for any "non-trivial" model of ST $\lambda \mathrm{C}=$ non-posetal cartesian closed category \mathcal{C} \rightsquigarrow inducing $\llbracket-\rrbracket^{\prime}:$ types \rightarrow objects of $\mathcal{C}+\llbracket-\rrbracket^{\prime}:(A \in$ types $) \rightarrow(t: A) \rightarrow \mathcal{C}\left(1, \llbracket A \rrbracket^{\prime}\right)$

The other equivalences

1. Syntactically regular \Longrightarrow recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet \Longrightarrow syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model \Longrightarrow by FinSet: claimed in Salvati's HDR

The other equivalences

1. Syntactically regular \Longrightarrow recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet \Longrightarrow syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model \Longrightarrow by FinSet: claimed in Salvati's HDR
"[...] using logical relations one easily establishes that recognizability with standard models is equivalent to recognizability with any extensional model" (finiteness implicit)

The other equivalences

1. Syntactically regular \Longrightarrow recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet \Longrightarrow syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model \Longrightarrow by FinSet: claimed in Salvati's HDR
" [...] using logical relations one easily establishes that recognizability with standard models is equivalent to recognizability with any extensional model" (finiteness implicit)

The other equivalences

1. Syntactically regular \Longrightarrow recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet \Longrightarrow syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model \Longrightarrow by FinSet: claimed in Salvati's HDR
" [...] using logical relations one easily establishes that recognizability with standard models is equivalent to recognizability with any extensional model" (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we'll start with (3)

The other equivalences

1. Syntactically regular \Longrightarrow recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet \Longrightarrow syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model \Longrightarrow by FinSet: claimed in Salvati's HDR
" [...] using logical relations one easily establishes that recognizability with standard models is equivalent to recognizability with any extensional model" (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we'll start with (3)

Extensional models (finitary when $\llbracket 0 \rrbracket^{\prime}$ finite)

$$
\begin{aligned}
\llbracket o \rrbracket^{\prime} & =\text { an arbitrary set } \quad t: A \Longrightarrow \llbracket t \rrbracket^{\prime} \in \llbracket A \rrbracket^{\prime} \\
\llbracket A \rightarrow B \rrbracket^{\prime} & \subseteq \llbracket A \rrbracket^{\prime} \rightarrow \llbracket B \rrbracket^{\prime} \quad \text { e.g. monotone functions between posets (finite Scott domains) }
\end{aligned}
$$

Equivalently: well-pointed cartesian closed categories i.e. $\mathcal{C}(X, Y) \hookrightarrow(\mathcal{C}(1, X) \rightarrow \mathcal{C}(1, Y))$

A logical relation between two models

FinSet some other model
$\vdash_{A} \subseteq \overbrace{\llbracket A \rrbracket_{Q}} \times \overbrace{\llbracket A \rrbracket^{\prime}}$ defined inductively: choose \Vdash_{o} and take

$$
f \Vdash_{A \rightarrow B} g \Longleftrightarrow \forall(x, y) \in \llbracket A \rrbracket_{Q} \times \llbracket A \rrbracket^{\prime}, x \Vdash_{A} y \Rightarrow f(x) \Vdash_{B} g(y)
$$

A logical relation between two models

FinSet some other model
$\vdash_{A} \subseteq \overbrace{\llbracket A \rrbracket_{Q}} \times \overbrace{\llbracket A \rrbracket^{\prime}}$ defined inductively: choose \Vdash_{o} and take

$$
f \Vdash_{A \rightarrow B} g \Longleftrightarrow \forall(x, y) \in \llbracket A \rrbracket_{Q} \times \llbracket A \rrbracket^{\prime}, x \Vdash_{A} y \Rightarrow f(x) \Vdash_{B} g(y)
$$

Fundamental lemma of logical relations

For any t : A, we have $\llbracket t \rrbracket_{Q} \Vdash_{A} \llbracket t \rrbracket^{\prime}$.
Proof by induction on the syntax - amounts to proving " $A \mapsto\left(\llbracket A \rrbracket_{Q}, \llbracket A \rrbracket^{\prime}, \Vdash_{A}\right)$ is a model"; the interpretation of t in that model witnesses that $\llbracket t \rrbracket_{Q} \Vdash_{A} \llbracket t \rrbracket^{\prime}$ (categorically: gluing of two CCCs - later if time allows)

A logical relation between two models

FinSet some other model
$\vdash_{A} \subseteq \overbrace{\llbracket A \rrbracket_{Q}} \times \overbrace{\llbracket A \rrbracket^{\prime}}$ defined inductively: choose \Vdash_{o} and take

$$
f \Vdash_{A \rightarrow B} g \Longleftrightarrow \forall(x, y) \in \llbracket A \rrbracket_{Q} \times \llbracket A \rrbracket^{\prime}, x \Vdash_{A} y \Rightarrow f(x) \Vdash_{B} g(y)
$$

Fundamental lemma of logical relations

For any $t: A$, we have $\llbracket t \rrbracket_{Q} \Vdash_{A} \llbracket t \rrbracket^{\prime}$.
Proof by induction on the syntax - amounts to proving " $A \mapsto\left(\llbracket A \rrbracket_{Q}, \llbracket A \rrbracket^{\prime}, \Vdash_{A}\right)$ is a model"; the interpretation of t in that model witnesses that $\llbracket t \rrbracket_{Q} \Vdash_{A} \llbracket t \rrbracket^{\prime}$ (categorically: gluing of two CCCs - later if time allows)
Purpose here: relate recognition by $\llbracket-\rrbracket_{Q}$ and by $\llbracket-\rrbracket^{\prime}$

Partial surjections

$\Vdash_{A} \subseteq \underbrace{\llbracket A \rrbracket_{Q}}_{\text {FinSet }} \times \underbrace{\llbracket A \rrbracket^{\prime}}_{\text {some other model }}$ defined inductively from $\Vdash_{0} \ldots \quad \begin{array}{r}\text { partial function: } \forall x,\left|\left\{y \mid x \Vdash_{A} y\right\}\right| \leqslant 1 \\ \text { surjective relation: } \forall y,\left|\left\{x \mid x \Vdash_{A} y\right\}\right| \geqslant 1\end{array}$
Classical fact
Suppose that $\llbracket-\rrbracket^{\prime}$ is an extensional model. If \Vdash_{o} is a partial surjection, so is \Vdash_{A} for all A.

Partial surjections

$\vdash_{A} \subseteq \underbrace{\llbracket A \rrbracket_{Q}}_{\text {Finset }} \times \underbrace{\llbracket A \rrbracket^{\prime}}_{\text {some other model }}$ defined inductively from $\Vdash_{0} \ldots \quad \begin{array}{r}\text { partial function: } \forall x,\left|\left\{y \mid x \Vdash_{A} y\right\}\right| \leqslant 1 \\ \text { surjective relation: } \forall y,\left|\left\{x \mid x \Vdash_{A} y\right\}\right| \geqslant 1\end{array}$

Classical fact

Suppose that $\llbracket-\rrbracket^{\prime}$ is an extensional model. If \Vdash_{o} is a partial surjection, so is \Vdash_{A} for all A.
Proof by induction: suppose \Vdash_{A} and \Vdash_{B} are partial surjections.

Proof that $\Vdash_{A \rightarrow B}$ is a partial function.

Suppose $f \Vdash_{A \rightarrow B} g$. Let $y \in \llbracket A \rrbracket^{\prime}$.
\Vdash_{A} is surjective so $\exists x . x \Vdash_{A} y$. By definition, $f(x) \Vdash_{B} g(y)$.
\Vdash_{B} is a partial function so $f(x)$ determines $g(y)$. When y varies, f determines g.
Note: the final argument uses extensionality!

Partial surjections

Classical fact

Suppose that $\llbracket-\rrbracket^{\prime}$ is an extensional model. If \Vdash_{o} is a partial surjection, so is \Vdash_{A} for all A.
Proof by induction: suppose \Vdash_{A} and \Vdash_{B} are partial surjections.
Proof that $\Vdash_{A \rightarrow B}$ is a surjection.
Let $g \in \llbracket A \rightarrow B \rrbracket^{\prime}$. Let $x \in \llbracket A \rrbracket_{Q}$.

- If $x \Vdash_{A} y$ then y unique $\left(\Vdash_{A}\right.$ partial function $)$: choose $f(x) \Vdash_{B} g(y)\left(\Vdash_{B}\right.$ surjective $)$
- Otherwise, if no such y, choose $f(x)$ arbitrary

Note: this part of the argument requires having FinSet on the left of \Vdash (any collection of choices of $f(x)$ can be glued into a function f)

Recognizable by finite extensional model \Longrightarrow FinSet-recognizable

Classical fact (previous slide)
In this case, \vdash_{A} is a partial surjection for all A.

Recognizable by finite extensional model \Longrightarrow FinSet-recognizable

Classical fact (previous slide)

In this case, \Vdash_{A} is a partial surjection for all A.
Let L be a $\llbracket-\rrbracket^{\prime}$-recognizable language of λ-terms of type A, i.e. $t \in L \Longleftrightarrow \llbracket t \rrbracket^{\prime} \in P \subseteq \llbracket A \rrbracket^{\prime}$.
Fundamental lemma: $\llbracket t \rrbracket_{Q} \Vdash_{A} \llbracket t \rrbracket^{\prime}$.
Since \Vdash_{A} is a partial function, $t \in L \Longleftrightarrow \exists y .\left(\llbracket t \rrbracket_{Q} \Vdash_{A} y\right) \wedge(y \in P)$ condition purely on $\llbracket t \rrbracket_{Q}$: FinSet-recognizable!

A logical relation between a syntactic model and FinSet (1)

Key observation

"Type-casting" $t: A \rightsquigarrow t[B]: A[B]$ is the interpretation in a syntactic model with $o \mapsto B$. (non-extensional and non-finitary model!)
syntactic model Let $\operatorname{Fin}(n)=\overbrace{0 \rightarrow \cdots \rightarrow 0} \rightarrow 0$ and $\Lambda(A)=\{t \mid t: A\} /(=\beta \eta)$.
n times
$\Vdash_{A}^{n} \subseteq \overbrace{\Lambda(A[\operatorname{Fin}(n)])} \times \overbrace{\llbracket A \rrbracket_{Q}}$ defined inductively for $Q=\{1, \ldots, n\}:$

$$
\begin{aligned}
t \Vdash_{o}^{n} q & \Longleftrightarrow t={ }_{\beta \eta} \lambda x_{1} \ldots \lambda x_{n} . x_{q} \quad \text { (bijective encoding) } \\
t \Vdash_{A \rightarrow B}^{n} f & \Longleftrightarrow \forall(u, x), u \Vdash_{A}^{n} x \Rightarrow t u \Vdash_{B}^{n} f(x)
\end{aligned}
$$

A logical relation between a syntactic model and FinSet (1)

Key observation

"Type-casting" $t: A \rightsquigarrow t[B]: A[B]$ is the interpretation in a syntactic model with $o \mapsto B$. (non-extensional and non-finitary model!)
syntactic model \quad Let $\operatorname{Fin}(n)=\overbrace{0 \rightarrow \cdots \rightarrow 0} \rightarrow 0$ and $\Lambda(A)=\{t \mid t: A\} /(=\beta \eta)$.
n times $\Vdash_{A}^{n} \subseteq \overbrace{\Lambda(A[\text { Fin }(n)])} \times \overbrace{\llbracket A \rrbracket_{Q}}$ defined inductively for $Q=\{1, \ldots, n\}$:

$$
\begin{aligned}
t \Vdash_{o}^{n} q & \Longleftrightarrow t={ }_{\beta \eta} \lambda x_{1} \ldots \lambda x_{n} . x_{q} \quad \text { (bijective encoding) } \\
t \Vdash_{A \rightarrow B}^{n} f & \Longleftrightarrow \forall(u, x), u \Vdash_{A}^{n} x \Rightarrow t u \Vdash_{B}^{n} f(x)
\end{aligned}
$$

Rough idea

Establish that \Vdash_{A}^{n} is (a bit more than) a partial surjection for all A
\Longrightarrow (as before) the syntactic model recognizes $\llbracket-\rrbracket_{Q}$-recognizable languages
\Longrightarrow (with some work) such languages syntactically regular: definable at $A[F i n(n)] \rightarrow$ Bool

A logical relation between a syntactic model and FinSet (2)

$\overbrace{\text { syntactic model }}^{\text {FinSet }}$ Let $\operatorname{Fin}(n)=o \rightarrow \cdots \rightarrow o \rightarrow o$ and $\Lambda(A)=\{t \mid t: A\} /\left(={ }_{\beta \eta}\right)$. $\Vdash_{A}^{n} \subseteq \overbrace{\Lambda(A[\operatorname{Fin}(n)])} \times \overbrace{\llbracket A \rrbracket_{Q}}$ def. inductively for $Q=\{1, \ldots, n\}$: case $A \rightarrow B$ as expected and

$$
t \Vdash_{o}^{n} q \Longleftrightarrow t={ }_{\beta \eta} \lambda x_{1} \ldots \lambda x_{n} \cdot x_{q}
$$

Key lemma

For all A, there are $u_{A}: \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right) \rightarrow A[\operatorname{Fin}(n)] \& v_{A}: A[\operatorname{Fin}(n)] \rightarrow \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right)$ such that

$$
s \Vdash \vdash_{o}^{\| \llbracket A \rrbracket_{Q} \mid} i \Longrightarrow u_{A} s \Vdash_{A}^{n} i \quad t \Vdash_{A}^{n} j \Longrightarrow v_{A} t \vdash_{o}^{\| A A \rrbracket_{Q} \mid} j
$$

where we identify $\llbracket A \rrbracket_{Q}$ with $\left\{1, \ldots,\left|\llbracket A \rrbracket_{Q}\right|\right\}$

- $u_{A}=$ " λ-definable surjectivity" of \Vdash_{A}^{n}
- $v_{A}=$ " λ-definable partial functionality" of \Vdash_{A}^{n}

A logical relation between a syntactic model and FinSet (3)

Key lemma

For all A, there are $u_{A}: \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right) \rightarrow A[\operatorname{Fin}(n)] \& v_{A}: A[\operatorname{Fin}(n)] \rightarrow \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right)$ such that

$$
s \Vdash \Vdash_{o}^{\left|\llbracket A \rrbracket_{Q}\right|} i \Longrightarrow u_{A} s \vdash_{A}^{n} i \quad t \Vdash \vdash_{A}^{n} j \Longrightarrow v_{A} t \vdash_{o}^{\left\lfloor\llbracket A \rrbracket_{Q} \mid\right.} j
$$

where we identify $i \in\left\{1, \ldots,\left|\llbracket A \rrbracket_{Q}\right|\right\}$ with $i \in \llbracket A \rrbracket_{Q}$ (recall $|Q|=n)$

Let $\operatorname{app}_{A, B}: \operatorname{Fin}\left(\left|\llbracket A \rightarrow B \rrbracket_{Q}\right|\right) \rightarrow \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right) \rightarrow \operatorname{Fin}\left(\left|\llbracket B \rrbracket_{Q}\right|\right)$ (definable by case analysis) correspond to the application map $\llbracket A \rightarrow B \rrbracket_{Q} \times \llbracket A \rrbracket_{Q} \rightarrow \llbracket B \rrbracket_{Q}$

$$
u_{A \rightarrow B}=\lambda\left(x: \operatorname{Fin}\left(\left|\llbracket A \rightarrow B \rrbracket_{Q}\right|\right)\right) \cdot \lambda(y: A[\operatorname{Fin}(n)]) \cdot u_{B}\left(a p p_{A, B} x\left(v_{A} y\right)\right)
$$

A logical relation between a syntactic model and FinSet (3)

Key lemma

For all A, there are $u_{A}: \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right) \rightarrow A[\operatorname{Fin}(n)] \& v_{A}: A[\operatorname{Fin}(n)] \rightarrow \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right)$ such that

$$
s \Vdash \Vdash_{o}^{\left|\llbracket A \rrbracket_{Q}\right|} i \Longrightarrow u_{A} s \vdash_{A}^{n} i \quad t \Vdash \vdash_{A}^{n} j \Longrightarrow v_{A} t \vdash_{o}^{\left\lfloor\llbracket A \rrbracket_{Q} \mid\right.} j
$$

where we identify $i \in\left\{1, \ldots,\left|\llbracket A \rrbracket_{Q}\right|\right\}$ with $i \in \llbracket A \rrbracket_{Q}$ $($ recall $|Q|=n)$

Let $a p p_{A, B}: \operatorname{Fin}\left(\left|\llbracket A \rightarrow B \rrbracket_{Q}\right|\right) \rightarrow \operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right) \rightarrow \operatorname{Fin}\left(\left|\llbracket B \rrbracket_{Q}\right|\right)$ (definable by case analysis) correspond to the application map $\llbracket A \rightarrow B \rrbracket_{Q} \times \llbracket A \rrbracket_{Q} \rightarrow \llbracket B \rrbracket_{Q}$

$$
u_{A \rightarrow B}=\lambda\left(x: \operatorname{Fin}\left(\left|\llbracket A \rightarrow B \rrbracket_{Q}\right|\right)\right) \cdot \lambda(y: A[\operatorname{Fin}(n)]) \cdot u_{B}\left(a p p_{A, B} x\left(v_{A} y\right)\right)
$$

Similarly, define $v_{A \rightarrow B}$ from $\left(\operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right|\right) \rightarrow \operatorname{Fin}\left(\left|\llbracket B \rrbracket_{Q}\right|\right)\right) \rightarrow \operatorname{Fin}\left(\left|\llbracket A \rightarrow B \rrbracket_{Q}\right|\right)$ (evaluate argument on all inhabitants of $\operatorname{Fin}\left(\left|\llbracket A \rrbracket_{Q}\right| \ldots\right.$)

Towards squeezing

Key structure here: λ-terms of respective types

$$
\operatorname{app}_{n, m}: \operatorname{Fin}\left(m^{n}\right) \rightarrow(\operatorname{Fin}(n) \rightarrow \operatorname{Fin}(m)) \quad(\operatorname{Fin}(n) \rightarrow \operatorname{Fin}(m)) \rightarrow \operatorname{Fin}\left(m^{n}\right)
$$

compatible with the logical relation: $s \Vdash_{o}^{m^{n}} i \Longrightarrow\left(a p p_{n, m} s\right)\left[\vdash_{0}^{n} \rightarrow \Vdash_{0}^{m}\right] i$
Similarly for a finite extensional model $\llbracket-\rrbracket^{\prime}$ before: implicitly uses set-theoretic maps

$$
\llbracket A \rightarrow B \rrbracket^{\prime} \rightarrow\left(\llbracket A \rrbracket^{\prime} \rightarrow \llbracket B \rrbracket^{\prime}\right)
$$

$$
\underbrace{\left(\llbracket A \rrbracket^{\prime} \rightarrow \llbracket B \rrbracket^{\prime}\right) \rightarrow \llbracket A \rightarrow B \rrbracket^{\prime}}_{\text {extensionality }+ \text { dummy values }}
$$

\rightarrow generalize common pattern: squeezing
\rightarrow Vincent Moreau's slides

