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Defining languages in the simply typed A-calculus (assuming you know the latter)

Church encodings of binary strings [ Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Str(;):

011 = Mo. M1. Ax. fo (fi (fi x)) : Strye 3 = (0 —0) = (0 —0) 0 —0

can also be “type-cast” to 011[A] : Stryg 13[A] = Strye 13{0 := A} for any simple type A
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Defining languages in the simply typed A-calculus (assuming you know the latter)

Church encodings of binary strings [ Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Str(;):

011 = Mo. M1. Ax. fo (fi (fi x)) : Strye 3 = (0 —0) = (0 —0) 0 —0
can also be “type-cast” to 011[A] : Stryg 13[A] = Strye 13{0 := A} for any simple type A
Simply typed A-terms ¢ : Strys ;3 [A] — Bool define languages L C {0, 1}*

Example: t = As. s id not true : Str, ;3 [Bool] — Bool (even number of 1s)

t 011[Bool] — 3 011[Bool| id not true — 3 id (not (not true)) — 4 true

Theorem (Hillebrand & Kanellakis 1996)

All regular languages, and only those, can be defined this way.

i.e. “syntactically regular” lang. C {u | u : Strgo 13} /(=5,) <= regularlang. C {0, 1}*
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Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

o regular expressions: 0*(10+10*)* = “only 6s and Is & even number of 1s”
o finite automata (DFA/NFA): e.g. drawing below
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Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

o regular expressions: 0*(10+10*)* = “only 6s and Is & even number of 1s”
o finite automata (DFA/NFA)
e algebraic definition below (very close to DFA), e.g. M = Z/(2)

Theorem (classical — attributed to Myhill by [Rabin & Scott 1958])
A language L C ¥* is regqular <= the corresponding decision problem factors as

some morphism

>* some finite monoid M — {yes, no}

~~ compositional (as in denotational semantics!) and finitary interpretation of strings
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Recognizing languages of simply typed \-terms via semantics

Naive set-theoretic interpretation of simply typed \-terms

[o]o = Q (an arbitrary set)

t:A = [t], € [A]
[4 - Blg = [Alo — [Blo = [Blg o

e Always compositional by def., e.g. [t u], = [t] ([u],) + invariant mod =g,
e Qfinite = every [A], finite
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Recognizing languages of simply typed \-terms via semantics

Naive set-theoretic interpretation of simply typed \-terms

[o]o = Q (an arbitrary set)

t:A = [t], € [A]
[4 - Blg = [Alo — [Blo = [Blg o

e Always compositional by def., e.g. [tu], = [t]q ([u]g) + invariant mod =g,
e Qfinite = every [A], finite

Definition (Regular languages of \-terms of type A [Salvati 2009])

{t|t:A}/(=py) & [A], where Q is a chosen finite set — {yes,no}

[w]y € [Strs]g = results of all runs of DFAs with states Q on rev(w) (via fold_right):
“semantically regular” (a la Salvati) lang. at type Strs, = regular lang. over X*

converse also holds (easy)
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Notions of regular languages of simply typed \-terms

Definition (Regularity of a “language” {t | t : A}/(=3,) — {yes,no})

Semantically regular: factors through naive set semantics [—], for Q finite [Salvati 2009]
Syntactically regular: defined by some term of type A[B] — Bool
inspired by [Hillebrand & Kanellakis 1996

For A = Stry, both equivalent to regular languages over ¥* ~+ robust /canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ...
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Notions of regular languages of simply typed \-terms

Definition (Regularity of a “language” {t | t : A}/(=3,) — {yes,no})

Semantically regular: factors through naive set semantics [—], for Q finite [Salvati 2009]

Syntactically regular: defined by some term of type A[B] — Bool
inspired by [Hillebrand & Kanellakis 1996

For A = Stry, both equivalent to regular languages over ¥* ~+ robust /canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, ...

Are regular languages of simply typed A-terms a robust notion?
e syntactically reg. <= semantically reg. VA? Yes! [Moreau & N., CSL'24]

o other definitions? some other finite semantics, e.g. finite Scott domains [Salvati|

e Statman’s finite completeness theorem = regularity of singleton languages
e applications to categorial grammars, higher-order matching, ... cf. Salvati’'s HDR
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Syntactically implies semantically regular

Fix t : A[B] — Bool. Choose Q = {0,1} so that [true], # [false],.

Vu: A, tu[B] =5 true < [tu[B]]q = [t]o([u[B]lg) = [truelg
Since [u[B]], = [u] B, the language defined by ¢ factors as

[=Tz14 [fo(—)=[true], ?

{ulu: A}/ (=pn) — [Alpg, = [A[Bllg

{yes,no}
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Fix t : A[B] — Bool. Choose Q = {0,1} so that [true], # [false],.

Vu: A, tu[B] =5 true < [tu[B]]q = [t]o([u[B]lg) = [truelg
Since [u[B]], = [u] B, the language defined by ¢ factors as

[=Tz14 [fo(—)=[true], ?

{ulu: A}/ (=pn) — [Alpg, = [A[Bllg

{yes,no}
O

e this is the “hard” direction of “syntactically reg. at Stry, <= reg. over ¥*” [HK96]
becomes easy once you know you should go through finite semantics
e works for any “non-trivial” model of STAC = non-posetal cartesian closed category C
~~ inducing [~]" : types — objects of C + [~] : (A € types) — (t: A) — C(1, [A])
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The other equivalences

1. Syntactically regular = recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet —> syntactically reg.: slightly tricky, later

3. Recognized by a finite extensional model = by FinSet: claimed in Salvati’s HDR
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The other equivalences

1. Syntactically regular = recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet —> syntactically reg.: slightly tricky, later

3. Recognized by a finite extensional model = by FinSet: claimed in Salvati’s HDR

“[...] using logical relations one easily establishes that recognizability with standard
models is equivalent to recognizability with any extensional model” (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we'll start with (3)

Extensional models (finitary when [o]’ finite)

[o]" = an arbitrary set t:A = [t] €[A]
[A— B] C[A]' = [B]' e.g. monotone functions between posets (finite Scott domains)

Equivalently: well-pointed cartesian closed categoriesi.e. C(X,Y) — (C(1,X) — C(1,Y))
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A logical relation between two models

FinSet some other model

IFa C [A]g x [A]" defined inductively: choose I, and take

flFasp g <= V(x,y) € [Alo x [A]', x Fay = f(x) IFs g(y)
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A logical relation between two models

FinSet some other model

~ =
IFa C [A]g x [A]" defined inductively: choose I, and take

flFasp g <= V(x,y) € [Alo x [A]', x Fay = f(x) IFs g(y)

Fundamental lemma of logical relations

Forany t : A, we have [t], IFa It]'.
Proof by induction on the syntax — amounts to proving “A — ([A], [A]",IF4) is a model”;

the interpretation of ¢ in that model witnesses that [t], -4 It
(categorically: gluing of two CCCs - later if time allows)
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A logical relation between two models

FinSet some other model

~ =
IFa C [A]g x [A]" defined inductively: choose I, and take

flFasp g <= V(x,y) € [Alo x [A]', x Fay = f(x) IFs g(y)

Fundamental lemma of logical relations

Forany t : A, we have [t], IFa It]'.

Proof by induction on the syntax — amounts to proving “A — ([A], [A]",IF4) is a model”;
the interpretation of ¢ in that model witnesses that [t], -4 It
(categorically: gluing of two CCCs - later if time allows)

Purpose here: relate recognition by [—], and by -1
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Partial surjections

IFa € [A]g x [A]’ defined inductively from Ik, ... partial function: Vx, |{y | xIFa y}| <1
—_— S .
FinSet some other model sutjective relation: Vy, [{x | xlFay}| > 1

Classical fact

Suppose that []' is an extensional model. If I, is a partial surjection, so is I-4 for all A.
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Partial surjections

IFa C [A]g % [A]" defined inductively from Ik, ...  partial function: Vx, |{y | x IFa y}| <1
—_— S .
FinSet some other model sutjective relation: Vy, [{x | xlFay}| > 1

Classical fact

Suppose that []' is an extensional model. If I, is a partial surjection, so is I-4 for all A.

Proof by induction: suppose I-4 and I-p are partial surjections.

Proof that IF4_,p is a partial function

Suppose f a5 g Lety € [A].
IF4 is surjective so Jx. x |4 y. By definition, f(x) IF5 g(y).

IFp is a partial function so f(x) determines g(y). When y varies, f determines g. O

Note: the final argument uses extensionality!
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Partial surjections
IFa C [A]g % [A]’ defined inductively from Ik, ...  partial function: Vx, |{y | x IFa y}| < 1
FinSet some other model sutjective relation: Vy, [{x | xlFay}| > 1

Classical fact

Suppose that [—]' is an extensional model. If Il-, is a partial surjection, so is I-4 for all A.

Proof by induction: suppose IF4 and IFp are partial surjections.

Proof that IF4_,5 is a surjection.

Letg € [A— B]'. Letx € [A],.

o If x I-4 y then y unique (I-4 partial function): choose f(x) I-g g(y) (IFg surjective)

O

e Otherwise, if no such y, choose f(x) arbitrary

Note: this part of the argument requires having FinSet on the left of I

(any collection of choices of f(x) can be glued into a function f)
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Recognizable by finite extensional model —> FinSet-recognizable

IFa C [A]g % [A]" defined inductively from I-, = equality on the set [o] Q=Q= [o]’
—~~ —— —_——

FinSet some other model a bijective relation assumption: [o]” finite

Classical fact (previous slide)

In this case, |4 is a partial surjection for all A.
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Recognizable by finite extensional model —> FinSet-recognizable

IFa C [A]g % [A]" defined inductively from I-, = equality on the set [o] Q=Q= [o]’
~—~ ——— ——

FinSet some other model a bijective relation assumption: [o]” finite

Classical fact (previous slide)

In this case, |4 is a partial surjection for all A.

Let L be a [—]'-recognizable language of \-terms of type A, i.e.t € L < [t]' € P C [A]'.
Fundamental lemma: [t] 5 IFa It].

Since |F4 is a partial function, t € L <= Jy. ([t] Fay) A (y € P)
condition purely on [t],: FinSet-recognizable!
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A logical relation between a syntactic model and FinSet (1)

Key observation

“Type-casting” t : A ~» t[B] : A[B] is the interpretation in a syntactic model with o — B.

(non-extensional and non-finitary model!)

n times
syntacticmodel  FinSet LetFin(n) =0— --- - 0—oand A(A) = {t | t: A}/(=pn)-
—_—N—
-3 € A(A[Fin(n)]) x [A] ; defined inductively for Q = {1,...,n}:

tlby g <= t=py Ax1. ... Axy.x; (bijective encoding)
tIFA g f < Y(u,x), ulFy x = tulFg f(x)
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Key observation

“Type-casting” t : A ~» t[B] : A[B] is the interpretation in a syntactic model with o — B.

(non-extensional and non-finitary model!)

n times
syntacticmodel  FinSet LetFin(n) =0— --- - 0—oand A(A) = {t | t: A}/(=pn)-
—_——N
-3 € A(A[Fin(n)]) x [A] ; defined inductively for Q = {1,...,n}:

tlby g <= t=py Ax1. ... Axy.x; (bijective encoding)
tIFA g f < Y(u,x), ulFy x = tulFg f(x)

Rough idea

Establish that -} is (a bit more than) a partial surjection for all A

= (as before) the syntactic model recognizes [—],-recognizable languages

= (with some work) such languages syntactically regular: definable at A[Fin(n)] — Bool
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A logical relation between a syntactic model and FinSet (2)

syntacticmodel  FinSet Let Fiﬂ(?l) =0—---—0—o0and A(A) = {l‘ | t: A}/(ZB”).

—_—~
IF4 € A(A[Fin(n)]) x [A]g def. inductively for Q = {1,...,n}: case A — B as expected and

tiFy g <= t=pp Ax1. ... A, %y

For all A, there are u4 : Fin(| [A]g |) — A[Fin(n)] & va : A[Fin(n)] — Fin(| [A], |) such that

I T FIFL o= oq t el

where we identify [A], with {1,....|[A], [}

o 1, = “)-definable surjectivity” of IF}

e v, = “A-definable partial functionality” of I}

12/14



A logical relation between a syntactic model and FinSet (3)

For all A, there are u, : Fin(| [A]5 ) — A[Fin(n)] & v4 : A[Fin(n)] — Fin(| [A] 5 |) such that

[[ATol [Algl .
0 J

s |- i = ussltyi tIFA ] = vathy,
where we identify i € {1,..., | [A], [} withi € [A], (recall |Q| = n)

Let app, g : Fin(| [A — Blg|) — Fin(| [A]o ) — Fin([ [B],|) (definable by case analysis)
correspond to the application map [A — B], x [A], — [B]g

Ua_g = Ax: Fin(|[A — B]]Q D)- Ay : AlFin(n)]). ug (appA‘Bx (vay))
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For all A, there are u, : Fin(| [A]5 ) — A[Fin(n)] & v4 : A[Fin(n)] — Fin(| [A] 5 |) such that

[[ATol [Algl .
0 J

s |- i = ussltyi tIFA ] = vathy,

where we identify i € {1,..., | [A], [} withi € [A], (recall |Q| = n)

Let app, g : Fin(| [A — Blg|) — Fin(| [A]o ) — Fin([ [B],|) (definable by case analysis)
correspond to the application map [A — B], x [A], — [B]g

Ua_g = Ax: Fin(|[A — B]]Q D)- Ay : AlFin(n)]). ug (appA‘Bx (vay))

Similarly, define va_,p from (Fin(| [A] [) — Fin(| [B]4 () — Fin(| [A — B]y [)
(evaluate argument on all inhabitants of Fin(| [A]5 ] -..)
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Towards squeezing

Key structure here: A-terms of respective types

app, , : Fin(m") — (Fin(n) — Fin(m)) (Fin(n) — Fin(m)) — Fin(m")
compatible with the logical relation: s i = (appyms) [Fo—IFy] i
Similarly for a finite extensional model [—] before: implicitly uses set-theoretic maps

[A - B]" — ([A]" - [B]) (IAl' — [B)') — [A — B]'

extensionality + dummy values

— generalize common pattern: squeezing

— Vincent Moreau'’s slides
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