
Syntactically & semantically regular languages of λ-terms
coincide through logical relations

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu – École normale supérieure de Lyon
joint work with Vincent Moreau (IRIF, Université Paris Cité)

22 March 2024, séminaire Gallinette, LS2N / Inria Nantes

1/14

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

can also be “type-cast” to 011[A] : Str{0,1}[A] = Str{0,1}{o := A} for any simple type A

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011[Bool] −→β 011[Bool] id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

i.e. “syntactically regular” lang. ⊆ {u | u : Str{0,1}}/(=βη) ⇐⇒ regular lang. ⊆ {0, 1}∗

2/14

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

can also be “type-cast” to 011[A] : Str{0,1}[A] = Str{0,1}{o := A} for any simple type A

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011[Bool] −→β 011[Bool] id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

i.e. “syntactically regular” lang. ⊆ {u | u : Str{0,1}}/(=βη) ⇐⇒ regular lang. ⊆ {0, 1}∗

2/14

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

can also be “type-cast” to 011[A] : Str{0,1}[A] = Str{0,1}{o := A} for any simple type A

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011[Bool] −→β 011[Bool] id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

i.e. “syntactically regular” lang. ⊆ {u | u : Str{0,1}}/(=βη) ⇐⇒ regular lang. ⊆ {0, 1}∗

2/14

Defining languages in the simply typed λ-calculus (assuming you know the latter)

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

can also be “type-cast” to 011[A] : Str{0,1}[A] = Str{0,1}{o := A} for any simple type A

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011[Bool] −→β 011[Bool] id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

i.e. “syntactically regular” lang. ⊆ {u | u : Str{0,1}}/(=βη) ⇐⇒ regular lang. ⊆ {0, 1}∗

2/14

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA): e.g. drawing below

even odd

0
1 0

1

3/14

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA)
• algebraic definition below (very close to DFA), e.g. M = Z/(2)

Theorem (classical – attributed to Myhill by [Rabin & Scott 1958])
A language L ⊆ Σ∗ is regular ⇐⇒ the corresponding decision problem factors as

Σ∗ some morphism−−−−−−−−−−−→ some finite monoid M → {yes, no}

⇝ compositional (as in denotational semantics!) and finitary interpretation of strings

3/14

Recognizing languages of simply typed λ-terms via semantics

Naive set-theoretic interpretation of simply typed λ-termsJoKQ = Q (an arbitrary set)

JA → BKQ = JAKQ → JBKQ = JBKJAKQ
Q

t : A =⇒ JtKQ ∈ JAKQ
• Always compositional by def., e.g. Jt uKQ = JtKQ (JuKQ) + invariant mod =βη

• Q finite =⇒ every JAKQ finite

Definition (Regular languages of λ-terms of type A [Salvati 2009])

{t | t : A}/(=βη)
J−KQ−−−−−−−→ JAKQ where Q is a chosen finite set → {yes,no}

JwKQ ∈ JStrΣKQ ∼= results of all runs of DFAs with states Q on rev(w) (via fold_right):
“semantically regular” (à la Salvati) lang. at type StrΣ =⇒︸ ︷︷ ︸

converse also holds (easy)

regular lang. over Σ∗

4/14

Recognizing languages of simply typed λ-terms via semantics

Naive set-theoretic interpretation of simply typed λ-termsJoKQ = Q (an arbitrary set)

JA → BKQ = JAKQ → JBKQ = JBKJAKQ
Q

t : A =⇒ JtKQ ∈ JAKQ
• Always compositional by def., e.g. Jt uKQ = JtKQ (JuKQ) + invariant mod =βη

• Q finite =⇒ every JAKQ finite

Definition (Regular languages of λ-terms of type A [Salvati 2009])

{t | t : A}/(=βη)
J−KQ−−−−−−−→ JAKQ where Q is a chosen finite set → {yes,no}

JwKQ ∈ JStrΣKQ ∼= results of all runs of DFAs with states Q on rev(w) (via fold_right):
“semantically regular” (à la Salvati) lang. at type StrΣ =⇒︸ ︷︷ ︸

converse also holds (easy)

regular lang. over Σ∗

4/14

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a “language” {t | t : A}/(=βη) → {yes,no})

Semantically regular: factors through naive set semantics J−KQ for Q finite [Salvati 2009]
Syntactically regular: defined by some term of type A[B] → Bool

inspired by [Hillebrand & Kanellakis 1996]

For A = StrΣ, both equivalent to regular languages over Σ∗ ⇝ robust/canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, …

Are regular languages of simply typed λ-terms a robust notion?

• syntactically reg. ⇐⇒ semantically reg. ∀A?

Yes! [Moreau & N., CSL’24]

• other definitions?

some other finite semantics, e.g. finite Scott domains [Salvati]

• Statman’s finite completeness theorem = regularity of singleton languages
• applications to categorial grammars, higher-order matching, … cf. Salvati’s HDR

5/14

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a “language” {t | t : A}/(=βη) → {yes,no})

Semantically regular: factors through naive set semantics J−KQ for Q finite [Salvati 2009]
Syntactically regular: defined by some term of type A[B] → Bool

inspired by [Hillebrand & Kanellakis 1996]

For A = StrΣ, both equivalent to regular languages over Σ∗ ⇝ robust/canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, …
Are regular languages of simply typed λ-terms a robust notion?

• syntactically reg. ⇐⇒ semantically reg. ∀A?

Yes! [Moreau & N., CSL’24]

• other definitions?

some other finite semantics, e.g. finite Scott domains [Salvati]

• Statman’s finite completeness theorem = regularity of singleton languages
• applications to categorial grammars, higher-order matching, … cf. Salvati’s HDR

5/14

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a “language” {t | t : A}/(=βη) → {yes,no})

Semantically regular: factors through naive set semantics J−KQ for Q finite [Salvati 2009]
Syntactically regular: defined by some term of type A[B] → Bool

inspired by [Hillebrand & Kanellakis 1996]

For A = StrΣ, both equivalent to regular languages over Σ∗ ⇝ robust/canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, …
Are regular languages of simply typed λ-terms a robust notion?

• syntactically reg. ⇐⇒ semantically reg. ∀A? Yes! [Moreau & N., CSL’24]
• other definitions?

some other finite semantics, e.g. finite Scott domains [Salvati]

• Statman’s finite completeness theorem = regularity of singleton languages
• applications to categorial grammars, higher-order matching, … cf. Salvati’s HDR

5/14

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a “language” {t | t : A}/(=βη) → {yes,no})

Semantically regular: factors through naive set semantics J−KQ for Q finite [Salvati 2009]
Syntactically regular: defined by some term of type A[B] → Bool

inspired by [Hillebrand & Kanellakis 1996]

For A = StrΣ, both equivalent to regular languages over Σ∗ ⇝ robust/canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, …
Are regular languages of simply typed λ-terms a robust notion?

• syntactically reg. ⇐⇒ semantically reg. ∀A? Yes! [Moreau & N., CSL’24]
• other definitions? some other finite semantics, e.g. finite Scott domains [Salvati]

• Statman’s finite completeness theorem = regularity of singleton languages
• applications to categorial grammars, higher-order matching, … cf. Salvati’s HDR

5/14

Notions of regular languages of simply typed λ-terms

Definition (Regularity of a “language” {t | t : A}/(=βη) → {yes,no})

Semantically regular: factors through naive set semantics J−KQ for Q finite [Salvati 2009]
Syntactically regular: defined by some term of type A[B] → Bool

inspired by [Hillebrand & Kanellakis 1996]

For A = StrΣ, both equivalent to regular languages over Σ∗ ⇝ robust/canonical notion!
many equivalent defs: regexp, automata variants, monoids, monadic second-order logic, …
Are regular languages of simply typed λ-terms a robust notion?

• syntactically reg. ⇐⇒ semantically reg. ∀A? Yes! [Moreau & N., CSL’24]
• other definitions? some other finite semantics, e.g. finite Scott domains [Salvati]

• Statman’s finite completeness theorem = regularity of singleton languages
• applications to categorial grammars, higher-order matching, … cf. Salvati’s HDR

5/14

Syntactically implies semantically regular

Proof.
Fix t : A[B] → Bool. Choose Q = {0, 1} so that JtrueKQ 6= JfalseKQ.

∀u : A, t u[B] →∗
β true ⇐⇒ Jt u[B]KQ = JtKQ(Ju[B]KQ) = JtrueKQ

Since Ju[B]KQ = JuKJBKQ , the language defined by t factors as

{u | u : A}/(=βη)
J−KJBKQ−−−−−→ JAKJBKQ = JA[B]KQ JtKQ(−)=JtrueKQ ?

−−−−−−−−−−−−→ {yes,no}

• this is the “hard” direction of “syntactically reg. at StrΣ ⇐⇒ reg. over Σ∗” [HK96]
becomes easy once you know you should go through finite semantics

• works for any “non-trivial” model of STλC = non-posetal cartesian closed category C
⇝ inducing J−K′ : types → objects of C + J−K′ : (A ∈ types) → (t : A) → C(1, JAK′)

6/14

Syntactically implies semantically regular

Proof.
Fix t : A[B] → Bool. Choose Q = {0, 1} so that JtrueKQ 6= JfalseKQ.

∀u : A, t u[B] →∗
β true ⇐⇒ Jt u[B]KQ = JtKQ(Ju[B]KQ) = JtrueKQ

Since Ju[B]KQ = JuKJBKQ , the language defined by t factors as

{u | u : A}/(=βη)
J−KJBKQ−−−−−→ JAKJBKQ = JA[B]KQ JtKQ(−)=JtrueKQ ?

−−−−−−−−−−−−→ {yes,no}

• this is the “hard” direction of “syntactically reg. at StrΣ ⇐⇒ reg. over Σ∗” [HK96]
becomes easy once you know you should go through finite semantics

• works for any “non-trivial” model of STλC = non-posetal cartesian closed category C
⇝ inducing J−K′ : types → objects of C + J−K′ : (A ∈ types) → (t : A) → C(1, JAK′)

6/14

The other equivalences

1. Syntactically regular =⇒ recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet =⇒ syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model =⇒ by FinSet: claimed in Salvati’s HDR

“[…] using logical relations one easily establishes that recognizability with standard
models is equivalent to recognizability with any extensional model” (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we’ll start with (3)

Extensional models (finitary when JoK′ finite)JoK′ = an arbitrary set t : A =⇒ JtK′ ∈ JAK′JA → BK′ ⊆ JAK′ → JBK′ e.g. monotone functions between posets (finite Scott domains)

Equivalently: well-pointed cartesian closed categories i.e. C(X,Y) ↪→ (C(1,X) → C(1,Y))

7/14

The other equivalences

1. Syntactically regular =⇒ recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet =⇒ syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model =⇒ by FinSet: claimed in Salvati’s HDR

“[…] using logical relations one easily establishes that recognizability with standard
models is equivalent to recognizability with any extensional model” (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we’ll start with (3)

Extensional models (finitary when JoK′ finite)JoK′ = an arbitrary set t : A =⇒ JtK′ ∈ JAK′JA → BK′ ⊆ JAK′ → JBK′ e.g. monotone functions between posets (finite Scott domains)

Equivalently: well-pointed cartesian closed categories i.e. C(X,Y) ↪→ (C(1,X) → C(1,Y))

7/14

The other equivalences

1. Syntactically regular =⇒ recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet =⇒ syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model =⇒ by FinSet: claimed in Salvati’s HDR

“[…] using logical relations one easily establishes that recognizability with standard
models is equivalent to recognizability with any extensional model” (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we’ll start with (3)

Extensional models (finitary when JoK′ finite)JoK′ = an arbitrary set t : A =⇒ JtK′ ∈ JAK′JA → BK′ ⊆ JAK′ → JBK′ e.g. monotone functions between posets (finite Scott domains)

Equivalently: well-pointed cartesian closed categories i.e. C(X,Y) ↪→ (C(1,X) → C(1,Y))

7/14

The other equivalences

1. Syntactically regular =⇒ recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet =⇒ syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model =⇒ by FinSet: claimed in Salvati’s HDR

“[…] using logical relations one easily establishes that recognizability with standard
models is equivalent to recognizability with any extensional model” (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we’ll start with (3)

Extensional models (finitary when JoK′ finite)JoK′ = an arbitrary set t : A =⇒ JtK′ ∈ JAK′JA → BK′ ⊆ JAK′ → JBK′ e.g. monotone functions between posets (finite Scott domains)

Equivalently: well-pointed cartesian closed categories i.e. C(X,Y) ↪→ (C(1,X) → C(1,Y))

7/14

The other equivalences

1. Syntactically regular =⇒ recognized by any non-trivial model: done
2. Semantically reg. i.e. recognized by FinSet =⇒ syntactically reg.: slightly tricky, later
3. Recognized by a finite extensional model =⇒ by FinSet: claimed in Salvati’s HDR

“[…] using logical relations one easily establishes that recognizability with standard
models is equivalent to recognizability with any extensional model” (finiteness implicit)

Logical relations also prove (2)! As a warm-up, we’ll start with (3)

Extensional models (finitary when JoK′ finite)JoK′ = an arbitrary set t : A =⇒ JtK′ ∈ JAK′JA → BK′ ⊆ JAK′ → JBK′ e.g. monotone functions between posets (finite Scott domains)

Equivalently: well-pointed cartesian closed categories i.e. C(X,Y) ↪→ (C(1,X) → C(1,Y))

7/14

A logical relation between two models

⊩A ⊆
FinSet︷ ︸︸ ︷JAKQ ×

some other model︷︸︸︷JAK′ defined inductively: choose ⊩o and take

f ⊩A→B g ⇐⇒ ∀(x, y) ∈ JAKQ × JAK′ , x ⊩A y ⇒ f(x) ⊩B g(y)

Fundamental lemma of logical relations
For any t : A, we have JtKQ ⊩A JtK′.
Proof by induction on the syntax – amounts to proving “A 7→ (JAKQ , JAK′ ,⊩A) is a model”;

the interpretation of t in that model witnesses that JtKQ ⊩A JtK′
(categorically: gluing of two CCCs – later if time allows)

Purpose here: relate recognition by J−KQ and by J−K′

8/14

A logical relation between two models

⊩A ⊆
FinSet︷ ︸︸ ︷JAKQ ×

some other model︷︸︸︷JAK′ defined inductively: choose ⊩o and take

f ⊩A→B g ⇐⇒ ∀(x, y) ∈ JAKQ × JAK′ , x ⊩A y ⇒ f(x) ⊩B g(y)

Fundamental lemma of logical relations
For any t : A, we have JtKQ ⊩A JtK′.
Proof by induction on the syntax – amounts to proving “A 7→ (JAKQ , JAK′ ,⊩A) is a model”;

the interpretation of t in that model witnesses that JtKQ ⊩A JtK′
(categorically: gluing of two CCCs – later if time allows)

Purpose here: relate recognition by J−KQ and by J−K′

8/14

A logical relation between two models

⊩A ⊆
FinSet︷ ︸︸ ︷JAKQ ×

some other model︷︸︸︷JAK′ defined inductively: choose ⊩o and take

f ⊩A→B g ⇐⇒ ∀(x, y) ∈ JAKQ × JAK′ , x ⊩A y ⇒ f(x) ⊩B g(y)

Fundamental lemma of logical relations
For any t : A, we have JtKQ ⊩A JtK′.
Proof by induction on the syntax – amounts to proving “A 7→ (JAKQ , JAK′ ,⊩A) is a model”;

the interpretation of t in that model witnesses that JtKQ ⊩A JtK′
(categorically: gluing of two CCCs – later if time allows)

Purpose here: relate recognition by J−KQ and by J−K′
8/14

Partial surjections

⊩A ⊆ JAKQ︸ ︷︷ ︸
FinSet

× JAK′︸︷︷︸
some other model

defined inductively from ⊩o … partial function: ∀x, |{y | x ⊩A y}| ⩽ 1
surjective relation: ∀y, |{x | x ⊩A y}| ⩾ 1

Classical fact
Suppose that J−K′ is an extensional model. If ⊩o is a partial surjection, so is ⊩A for all A.

Proof by induction: suppose ⊩A and ⊩B are partial surjections.

Proof that ⊩A→B is a partial function.
Suppose f ⊩A→B g. Let y ∈ JAK′.
⊩A is surjective so ∃x. x ⊩A y. By definition, f(x) ⊩B g(y).

⊩B is a partial function so f(x) determines g(y). When y varies, f determines g.

Note: the final argument uses extensionality!

9/14

Partial surjections

⊩A ⊆ JAKQ︸ ︷︷ ︸
FinSet

× JAK′︸︷︷︸
some other model

defined inductively from ⊩o … partial function: ∀x, |{y | x ⊩A y}| ⩽ 1
surjective relation: ∀y, |{x | x ⊩A y}| ⩾ 1

Classical fact
Suppose that J−K′ is an extensional model. If ⊩o is a partial surjection, so is ⊩A for all A.

Proof by induction: suppose ⊩A and ⊩B are partial surjections.

Proof that ⊩A→B is a partial function.
Suppose f ⊩A→B g. Let y ∈ JAK′.
⊩A is surjective so ∃x. x ⊩A y. By definition, f(x) ⊩B g(y).

⊩B is a partial function so f(x) determines g(y). When y varies, f determines g.

Note: the final argument uses extensionality!

9/14

Partial surjections

⊩A ⊆ JAKQ︸ ︷︷ ︸
FinSet

× JAK′︸︷︷︸
some other model

defined inductively from ⊩o … partial function: ∀x, |{y | x ⊩A y}| ⩽ 1
surjective relation: ∀y, |{x | x ⊩A y}| ⩾ 1

Classical fact
Suppose that J−K′ is an extensional model. If ⊩o is a partial surjection, so is ⊩A for all A.

Proof by induction: suppose ⊩A and ⊩B are partial surjections.
Proof that ⊩A→B is a surjection.
Let g ∈ JA → BK′. Let x ∈ JAKQ.
• If x ⊩A y then y unique (⊩A partial function): choose f(x) ⊩B g(y) (⊩B surjective)
• Otherwise, if no such y, choose f(x) arbitrary

Note: this part of the argument requires having FinSet on the left of ⊩
(any collection of choices of f(x) can be glued into a function f)

9/14

Recognizable by finite extensional model =⇒ FinSet-recognizable

⊩A ⊆ JAKQ︸ ︷︷ ︸
FinSet

× JAK′︸︷︷︸
some other model

defined inductively from ⊩o = equality︸ ︷︷ ︸
a bijective relation

on the set JoKQ = Q = JoK′︸ ︷︷ ︸
assumption: JoK′ finite

Classical fact (previous slide)
In this case, ⊩A is a partial surjection for all A.

Let L be a J−K′-recognizable language of λ-terms of type A, i.e. t ∈ L ⇐⇒ JtK′ ∈ P ⊆ JAK′.
Fundamental lemma: JtKQ ⊩A JtK′.
Since ⊩A is a partial function, t ∈ L ⇐⇒ ∃y. (JtKQ ⊩A y) ∧ (y ∈ P)

condition purely on JtKQ: FinSet-recognizable!

10/14

Recognizable by finite extensional model =⇒ FinSet-recognizable

⊩A ⊆ JAKQ︸ ︷︷ ︸
FinSet

× JAK′︸︷︷︸
some other model

defined inductively from ⊩o = equality︸ ︷︷ ︸
a bijective relation

on the set JoKQ = Q = JoK′︸ ︷︷ ︸
assumption: JoK′ finite

Classical fact (previous slide)
In this case, ⊩A is a partial surjection for all A.

Let L be a J−K′-recognizable language of λ-terms of type A, i.e. t ∈ L ⇐⇒ JtK′ ∈ P ⊆ JAK′.
Fundamental lemma: JtKQ ⊩A JtK′.
Since ⊩A is a partial function, t ∈ L ⇐⇒ ∃y. (JtKQ ⊩A y) ∧ (y ∈ P)

condition purely on JtKQ: FinSet-recognizable!
10/14

A logical relation between a syntactic model and FinSet (1)

Key observation
“Type-casting” t : A⇝ t[B] : A[B] is the interpretation in a syntactic model with o 7→ B.

(non-extensional and non-finitary model!)

Let Fin(n) =
n times︷ ︸︸ ︷

o → · · · → o → o and Λ(A) = {t | t : A}/(=βη).

⊩n
A ⊆

syntactic model︷ ︸︸ ︷
Λ(A[Fin(n)])×

FinSet︷ ︸︸ ︷JAKQ defined inductively for Q = {1, . . . , n}:

t ⊩n
o q ⇐⇒ t =βη λx1. . . . λxn. xq (bijective encoding)

t ⊩n
A→B f ⇐⇒ ∀(u, x), u ⊩n

A x ⇒ t u ⊩n
B f(x)

Rough idea
Establish that ⊩n

A is (a bit more than) a partial surjection for all A
=⇒ (as before) the syntactic model recognizes J−KQ-recognizable languages
=⇒ (with some work) such languages syntactically regular: definable at A[Fin(n)] → Bool

11/14

A logical relation between a syntactic model and FinSet (1)

Key observation
“Type-casting” t : A⇝ t[B] : A[B] is the interpretation in a syntactic model with o 7→ B.

(non-extensional and non-finitary model!)

Let Fin(n) =
n times︷ ︸︸ ︷

o → · · · → o → o and Λ(A) = {t | t : A}/(=βη).

⊩n
A ⊆

syntactic model︷ ︸︸ ︷
Λ(A[Fin(n)])×

FinSet︷ ︸︸ ︷JAKQ defined inductively for Q = {1, . . . , n}:

t ⊩n
o q ⇐⇒ t =βη λx1. . . . λxn. xq (bijective encoding)

t ⊩n
A→B f ⇐⇒ ∀(u, x), u ⊩n

A x ⇒ t u ⊩n
B f(x)

Rough idea
Establish that ⊩n

A is (a bit more than) a partial surjection for all A
=⇒ (as before) the syntactic model recognizes J−KQ-recognizable languages
=⇒ (with some work) such languages syntactically regular: definable at A[Fin(n)] → Bool

11/14

A logical relation between a syntactic model and FinSet (2)

Let Fin(n) = o → · · · → o → o and Λ(A) = {t | t : A}/(=βη).

⊩n
A ⊆

syntactic model︷ ︸︸ ︷
Λ(A[Fin(n)])×

FinSet︷ ︸︸ ︷JAKQ def. inductively for Q = {1, . . . , n}: case A → B as expected and

t ⊩n
o q ⇐⇒ t =βη λx1. . . . λxn. xq

Key lemma
For all A, there are uA : Fin(| JAKQ |) → A[Fin(n)] & vA : A[Fin(n)] → Fin(| JAKQ |) such that

s ⊩|JAKQ|
o i =⇒ uA s ⊩n

A i t ⊩n
A j =⇒ vA t `|JAKQ|

o j

where we identify JAKQ with {1, . . . , | JAKQ |}

• uA = “λ-definable surjectivity” of ⊩n
A

• vA = “λ-definable partial functionality” of ⊩n
A

12/14

A logical relation between a syntactic model and FinSet (3)

Key lemma
For all A, there are uA : Fin(| JAKQ |) → A[Fin(n)] & vA : A[Fin(n)] → Fin(| JAKQ |) such that

s ⊩|JAKQ|
o i =⇒ uA s ⊩n

A i t ⊩n
A j =⇒ vA t `|JAKQ|

o j

where we identify i ∈ {1, . . . , | JAKQ |} with i ∈ JAKQ (recall |Q| = n)

Let appA,B : Fin(| JA → BKQ |) → Fin(| JAKQ |) → Fin(| JBKQ |) (definable by case analysis)
correspond to the application map JA → BKQ × JAKQ → JBKQ

uA→B = λ(x : Fin(| JA → BKQ |)). λ(y : A[Fin(n)]). uB (appA,B x (vA y))

Similarly, define vA→B from (Fin(| JAKQ |) → Fin(| JBKQ |)) → Fin(| JA → BKQ |)
(evaluate argument on all inhabitants of Fin(| JAKQ | …)

13/14

A logical relation between a syntactic model and FinSet (3)

Key lemma
For all A, there are uA : Fin(| JAKQ |) → A[Fin(n)] & vA : A[Fin(n)] → Fin(| JAKQ |) such that

s ⊩|JAKQ|
o i =⇒ uA s ⊩n

A i t ⊩n
A j =⇒ vA t `|JAKQ|

o j

where we identify i ∈ {1, . . . , | JAKQ |} with i ∈ JAKQ (recall |Q| = n)

Let appA,B : Fin(| JA → BKQ |) → Fin(| JAKQ |) → Fin(| JBKQ |) (definable by case analysis)
correspond to the application map JA → BKQ × JAKQ → JBKQ

uA→B = λ(x : Fin(| JA → BKQ |)). λ(y : A[Fin(n)]). uB (appA,B x (vA y))

Similarly, define vA→B from (Fin(| JAKQ |) → Fin(| JBKQ |)) → Fin(| JA → BKQ |)
(evaluate argument on all inhabitants of Fin(| JAKQ | …)

13/14

Towards squeezing

Key structure here: λ-terms of respective types

appn,m : Fin(mn) → (Fin(n) → Fin(m)) (Fin(n) → Fin(m)) → Fin(mn)

compatible with the logical relation: s ⊩mn
o i =⇒ (appn,m s) [⊩n

o→⊩m
o] i

Similarly for a finite extensional model J−K′ before: implicitly uses set-theoretic maps

JA → BK′ → (JAK′ → JBK′) (JAK′ → JBK′) → JA → BK′︸ ︷︷ ︸
extensionality + dummy values

→ generalize common pattern: squeezing

→ Vincent Moreau’s slides

14/14

