Ambiguity/growth of tree automata/transducers made easy via MSO queries

Lê Thành Dũng (Tito) Nguyễn — nltdanguyentito.eu — ÉNS Lyon joint work with Paul Gallot (Bremen) \& Nathan Lhote (Aix-Marseille)

Séminaire LX, LaBRI, Bordeaux - 8 février 2023

What is an interesting class of finite-state computable functions?

Regular languages ($L \subseteq \Sigma^{*}$): a robust notion deterministic finite automata \Longleftrightarrow nondeterministic FA \Longleftrightarrow two-way FA \Longleftrightarrow regular expressions \Longleftrightarrow monadic second-order logic (MSO) $\Longleftrightarrow \ldots$

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$? \rightsquigarrow consider transducers: automata with output

What is an interesting class of finite-state computable functions?

Regular languages $\left(L \subseteq \Sigma^{*}\right)$: a robust notion

deterministic finite automata \Longleftrightarrow nondeterministic FA \Longleftrightarrow two-way FA \Longleftrightarrow regular expressions \Longleftrightarrow monadic second-order logic (MSO) $\Longleftrightarrow \ldots$

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$? \rightsquigarrow consider transducers: automata with output Some equivalences don't hold anymore, e.g. DFT \subsetneq NFT! Several usual classes:

- Linear growth: $|f(w)|=O(|w|)$ for $f: \Sigma^{*} \rightarrow \Gamma^{*}$ rational (NFT) / regular (MSO)
- Or hyperexponential growth (L-systems, iterated pushdown transducers, ...)

What is an interesting class of finite-state computable functions?

Regular languages ($L \subseteq \Sigma^{*}$): a robust notion
deterministic finite automata \Longleftrightarrow nondeterministic FA \Longleftrightarrow two-way FA \Longleftrightarrow regular expressions \Longleftrightarrow monadic second-order logic (MSO) $\Longleftrightarrow \ldots$

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$? \rightsquigarrow consider transducers: automata with output Some equivalences don't hold anymore, e.g. DFT \subsetneq NFT! Several usual classes:

- Linear growth: $|f(w)|=O(|w|)$ for $f: \Sigma^{*} \rightarrow \Gamma^{*}$ rational (NFT) / regular (MSO)
- Or hyperexponential growth (L-systems, iterated pushdown transducers, ...)

Complexity theory: feasible $=\mathrm{P}$. What is the finite-state counterpart?

Proposal (Bojańczyk 2018): polyregular functions

Robust class of string functions, computed by pebble transducers (early 2000s)

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output:

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: a

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: $a b$

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abca

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcab

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#b

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#ba

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$
∇

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacba

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$
∇
\Downarrow

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$
∇

Output: abcabc\#bacbac\#c

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$
\Downarrow

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbc

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions = computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

Output: abcabc\#bacbac\#cbcb

Pebble transducers [Milo, Suciu \& Vianu 2000; Engelfriet \& Maneth 2002]

Polyregular functions $=$ computed by k-pebble transducers $(k \geq 1)$
DFA (hidden in drawing) + stack of height $\leqslant k$ of heads ("pebbles")
"Inner squaring" innsq: $w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abcabc\#bacbac\#cbcb
Not shown here: heads are two-way \rightsquigarrow can compute e.g. reverse

Polyregular functions and their growth

- Closed under composition [Engelfriet \& Maneth 2002; Engelfriet 2015]
- L regular $\Longrightarrow f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest
[Bojańczyk 2018, 2023; Bojańczyk, Kiefer \& Lhote 2019]
- Polynomial growth: k pebbles $\Longrightarrow O\left(n^{k}\right)$ growth

Polyregular functions and their growth

- Closed under composition [Engelfriet \& Maneth 2002; Engelfriet 2015]
- L regular $\Longrightarrow f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest
[Bojańczyk 2018, 2023; Bojańczyk, Kiefer \& Lhote 2019]
- Polynomial growth: k pebbles $\Longrightarrow O\left(n^{k}\right)$ growth

$$
\begin{aligned}
& \text { What about the converse? } \\
& \begin{aligned}
\text { For } w=w_{0} \# \ldots \# w_{n},|\operatorname{innsq}(w)|=\left|\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}\right|=O\left(|w|^{2}\right) \\
\qquad \longrightarrow \text { could innsq be computed with only } 2 \text { pebbles instead of } 3 \text { ? }
\end{aligned}
\end{aligned}
$$

Polyregular functions and their growth

- Closed under composition [Engelfriet \& Maneth 2002; Engelfriet 2015]
- L regular $\Longrightarrow f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest
[Bojańczyk 2018, 2023; Bojańczyk, Kiefer \& Lhote 2019]
- Polynomial growth: k pebbles $\Longrightarrow O\left(n^{k}\right)$ growth

What about the converse?

$$
\begin{aligned}
& \text { For } w=w_{0} \# \ldots \# w_{n}, \mid \text { inns } q(w)\left|=\left|\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}\right|=O\left(|w|^{2}\right)\right. \\
& \longrightarrow \text { could innsq be computed with only } 2 \text { pebbles instead of } 3 ?
\end{aligned}
$$

- Main theorem of a LICS'20 paper: $O\left(n^{k}\right) \Longrightarrow$ computable with k pebbles

Polyregular functions and their growth

- Closed under composition [Engelfriet \& Maneth 2002; Engelfriet 2015]
- L regular $\Longrightarrow f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest [Bojańczyk 2018, 2023; Bojańczyk, Kiefer \& Lhote 2019]
- Polynomial growth: k pebbles $\Longrightarrow O\left(n^{k}\right)$ growth

What about the converse?

$$
\begin{aligned}
& \text { For } w=w_{0} \# \ldots \# w_{n}, \mid \text { inns } q(w)\left|=\left|\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}\right|=O\left(|w|^{2}\right)\right. \\
& \longrightarrow \text { could innsq be computed with only } 2 \text { pebbles instead of } 3 ?
\end{aligned}
$$

- Main theorem of a LICS'20 paper: $O\left(n^{k}\right) \Longrightarrow$ computable with k pebbles
- But actually, innsq requires 3 pebbles! [Bojańczyk 2023; Kiefer, N. \& Pradic 2023]

Polyregular functions and their growth

- Closed under composition [Engelfriet \& Maneth 2002; Engelfriet 2015]
- L regular $\Longrightarrow f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest [Bojańczyk 2018, 2023; Bojańczyk, Kiefer \& Lhote 2019]
- Polynomial growth: k pebbles $\Longrightarrow O\left(n^{k}\right)$ growth

What about the converse?

$$
\begin{aligned}
\text { For } w=w_{0} \# \ldots \# w_{n}, & |\operatorname{innsq}(w)|=\left|\left(w_{0}\right)^{n} \# \ldots \#\left(w_{n}\right)^{n}\right|=O\left(|w|^{2}\right) \\
& \longrightarrow \text { could innsq be computed with only } 2 \text { pebbles instead of } 3 ?
\end{aligned}
$$

- Main theorem of a LICS'20 paper: $O\left(n^{k}\right) \Longrightarrow$ computable with k pebbles
- But actually, innsq requires 3 pebbles! [Bojańczyk 2023; Kiefer, N. \& Pradic 2023]
- We will be able to realize innsq with 2 "pointers to input" using logic

Logical transductions

Example: $w \mapsto a^{|w|} \cdot \operatorname{reverse}(w)$

Logical transductions

Example: $w \mapsto a^{|w|} \cdot \operatorname{reverse}(w)$

Idea: for an input word $w \in \Gamma^{*}$, define over $z, z^{\prime} \in I \times\{1, \ldots,|w|\}$

$$
\text { unary relations } a(z) \text { for } a \in \Sigma \quad+\quad \text { a binary relation } z \prec z^{\prime}
$$

if we're lucky, the result is isomorphic to an output word $f(w) \in \Sigma^{*}$

MSO transductions

Reminder on Monadic Second-Order logic

MSO formula: $\varphi\left(x_{1}, \ldots, x_{n}\right)$, the x_{k} refer to positions of a word $w\left(1 \leq x_{k} \leq|w|\right)$

$$
\varphi, \psi::=\underbrace{a(x)}_{\text {position } x \text { has label } a}|x<y| \exists x . \varphi|\underbrace{\exists X . \varphi}_{X \subseteq \text { positions }}| x \in X|\varphi \wedge \psi| \neg \varphi
$$

1960s: $L \subseteq \Gamma^{*}$ regular language $\Longleftrightarrow \exists \varphi \cdot L=\left\{w \in \Sigma^{*} \mid w \vDash \varphi\right\}$ (for $n=0$)
$\underline{\text { MSO transduction }}=$ finite set $I+\varphi_{a}^{i}(x)+\varphi_{\prec}^{i, j}(x, y)$ for $a \in \Sigma$ and $i, j \in I$

MSO transductions

Reminder on Monadic Second-Order logic

MSO formula: $\varphi\left(x_{1}, \ldots, x_{n}\right)$, the x_{k} refer to positions of a word $w\left(1 \leq x_{k} \leq|w|\right)$

$$
\varphi, \psi::=\underbrace{a(x)}_{\text {position } x \text { has label } a}|x<y| \exists x . \varphi|\underbrace{\exists X . \varphi}_{X \subseteq \text { positions }}| x \in X|\varphi \wedge \psi| \neg \varphi
$$

1960s: $L \subseteq \Gamma^{*}$ regular language $\Longleftrightarrow \exists \varphi . L=\left\{w \in \Sigma^{*} \mid w \vDash \varphi\right\}$ (for $n=0$)
$\underline{\text { MSO transduction }}=$ finite set $I+\varphi_{a}^{i}(x)+\varphi_{\prec}^{i, j}(x, y)$ for $a \in \Sigma$ and $i, j \in I$

Theorem [Engelfriet \& Hoogeboom 2001]

String-to-string MSO transductions \equiv 1-pebble (i.e. "two-way") transducers
(Not too hard once you know these transducers are closed under composition)
\longrightarrow this is called the class of regular functions

MSO interpretations in higher dimension

MSO interpretation $\Gamma^{*} \rightarrow \Sigma^{*}=$ choose dimension $k \in \mathbb{N}$, a finite set I \& formulas

$$
\varphi_{a}^{i}\left(x_{1}, \ldots, x_{k}\right) \text { for } a \in \Sigma \quad \varphi_{\prec}^{i, j}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) \quad i, j \in I
$$

$w \in \Gamma^{*} \longmapsto$ relations $a(-)$ and \prec over $I \times\{1, \ldots,|w|\}^{k}$
again, if we're lucky, this structure is isomorphic to some $f(w) \in \Sigma^{*}$

MSO interpretations in higher dimension

MSO interpretation $\Gamma^{*} \rightarrow \Sigma^{*}=$ choose dimension $k \in \mathbb{N}$, a finite set $I \&$ formulas

$$
\varphi_{a}^{i}\left(x_{1}, \ldots, x_{k}\right) \text { for } a \in \Sigma \quad \varphi_{\prec}^{i, j}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) \quad i, j \in I
$$

$w \in \Gamma^{*} \longmapsto$ relations $a(-)$ and \prec over $I \times\{1, \ldots,|w|\}^{k}$
again, if we're lucky, this structure is isomorphic to some $f(w) \in \Sigma^{*}$

Theorem [Bojańczyk, Kiefer \& Lhote 2019]

String-to-string MSO interpretations = polyregular functions

- Highly technical proof using finite model theory
- Somewhat "unnatural": no reason a priori for MSO interpretations to preserve regular languages by inverse image whereas MSO transductions (1-dim.) compose by syntactic substitution

Example of MSO interpretation

inns $q^{\prime}: w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \ldots\left(w_{n}\right)^{n}$ has a dim. 2 (optimal) interpretation:

$$
\longrightarrow(a c a b)(a c a b)(a b b a)(a b b a)(c)(c)
$$

Example of MSO interpretation

innsq $q^{\prime}: w_{0} \# \ldots \# w_{n} \longmapsto\left(w_{0}\right)^{n} \ldots\left(w_{n}\right)^{n}$ has a dim. 2 (optimal) interpretation:

```
            acab#abba#c
\vdots
# acab abba c
                                    \longrightarrow(acab)(acab)(abba)(abba)(c)(c)
# acab abba c
```

- $\varphi_{a}\left(x_{1}, x_{2}\right)=a\left(x_{1}\right) \wedge \#\left(x_{2}\right)$
- $\varphi_{\prec}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\exists x_{3}, y_{3}$. which begin blocks containing resp. x_{1}, y_{1} and $\left(x_{3}, x_{2}, x_{1}\right)<\left(y_{3}, y_{2}, y_{1}\right)$ lex. \longrightarrow pebbles $\downarrow, \Downarrow, \nabla$

Dimension minimisation

Theorem [Bojańczyk 2023]
MSO interpretations of dim. k on strings = polyregular fn with growth $O\left(n^{k}\right)$

Dimension minimisation

Theorem [Bojańczyk 2023]

MSO interpretations of dim. k on strings = polyregular fn with growth $O\left(n^{k}\right)$
Fundamentally, it's not about interpretations, it's about queries:

Main lemma

Let $\varphi\left(x_{1}, \ldots, x_{\ell}\right)$ be an MSO formula over Γ^{*}. One can compute:

- the least $k \in \mathbb{N}$ such that $\left|\left\{\left(i_{1}, \ldots, i_{\ell}\right)|w|=\varphi\left(i_{1}, \ldots, i_{\ell}\right)\right\}\right|=O\left(|w|^{k}\right)$ (so $\left.k \leq \ell\right)$;
- $\psi\left(x_{1}, \ldots, x_{\ell}, z_{1}, \ldots, z_{k}\right)$ and $B \in \mathbb{N}$ such that for every $w \in \Gamma^{*}$,
- $\forall j_{1}, \ldots, j_{k},\left|\left\{\left(i_{1}, \ldots, i_{\ell}\right) \mid w \models \psi\left(i_{1}, \ldots, i_{\ell}, j_{1}, \ldots, j_{k}\right)\right\}\right| \leq B ;$
- $\forall i_{1}, \ldots, i_{\ell}, w \models \varphi\left(i_{1}, \ldots, i_{\ell}\right) \Longrightarrow\left|\left\{\left(j_{1}, \ldots, j_{k}\right)|w|=\psi\left(i_{1}, \ldots, i_{\ell}, j_{1}, \ldots, j_{k}\right)\right\}\right|=1$.

Suffices to derive the theorem by simple syntactic "reparametrization"

MSO query reparametrization made easy

- Bojańczyk proves (something more precise than) the Main Lemma via compositionality of MSO + factorisation forests
- This is overkill: the Main Lemma reduces to a structure theorem on polynomially ambiguous automata, obtained by "simple-minded" pumping origin: [Seidl \& Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot \& Gastin 2020]

MSO query reparametrization made easy

- Bojańczyk proves (something more precise than) the Main Lemma via compositionality of MSO + factorisation forests
- This is overkill: the Main Lemma reduces to a structure theorem on polynomially ambiguous automata, obtained by "simple-minded" pumping
origin: [Seidl \& Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot \& Gastin 2020]
Connection between MSO queries and ambiguous automata
$\varphi\left(x_{1}, \ldots, x_{\ell}\right) \rightsquigarrow$ DFA recognizing words with ℓ marked positions
$\xrightarrow[\text { projection }\left(\Gamma \times\{0,1\}^{\ell}\right)^{*} \rightarrow \Gamma^{*}]{ }$ NFA recognizing words without marks
Ambiguity (nb of runs) of NFA on $w \in \Gamma^{*}=\mathrm{nb}$ of " $w+$ marks" accepted by DFA $=\mathrm{nb}$ of query matches on w

MSO set queries and set interpretations

Connection between MSO set queries and ambiguous automata

 $\varphi(\underbrace{X_{1}, \ldots, X_{\ell}}) \rightsquigarrow$ DFA recognizing words with $\{0,1\}^{\ell}$-coloring variables ranging over subsets of positions \longrightarrow NFA recognizing words without colors $\underbrace{\text { Ambiguity }}$ of NFA on $w \in \Gamma^{*}=\mathrm{nb}$ of " $w+$ colors" accepted by DFA now possibly exponential $\quad=$ nb of query matches on w
MSO set queries and set interpretations

Connection between MSO set queries and ambiguous automata

 $\varphi(\underbrace{X_{1}, \ldots, X_{\ell}}) \rightsquigarrow$ DFA recognizing words with $\{0,1\}^{\ell}$-coloring variables ranging over subsets of positions\longrightarrow NFA recognizing words without colors
$\underbrace{\text { Ambiguity }}$ of NFA on $w \in \Gamma^{*}=\mathrm{nb}$ of " $w+$ colors" accepted by DFA now possibly exponential $\quad=n b$ of query matches on w

Structure thm of poly. amb. NFA \Longrightarrow can determine whether nb of matches of φ is $O\left(n^{k}\right)$, and if so, compute reparametrization $\psi\left(X_{1}, \ldots, X_{\ell}, z_{1}, \ldots, z_{k}\right)$

Corollary: generalization of Bojanczyk's dimension minimization theorem

MSO set interpretation of growth $O\left(n^{k}\right) \equiv$ MSO interpretation of dim. k
$\underline{\text { def: specified by } \varphi_{a}\left(X_{1}, \ldots, X_{\ell}\right)+\varphi_{\prec}\left(X_{1}, \ldots, X_{\ell}, Y_{1}, \ldots, Y_{\ell}\right) \text { [Colcombet \& Löding 2007] }}$

Generalization to trees

- Simple pumping (pigeonhole principle) instead of factorization forests \longrightarrow can hope for extension from strings to ranked trees

Generalization to trees

- Simple pumping (pigeonhole principle) instead of factorization forests \longrightarrow can hope for extension from strings to ranked trees
- Reuse ideas from Erik Paul's master thesis (Univ. Leipzig, 2015)
\longrightarrow proof "from scratch" of "main lemma" in a few pages
\longrightarrow dimension minimization for tree-to-anything MSO set interpretations follows by same syntactic argument as before

Generalization to trees

- Simple pumping (pigeonhole principle) instead of factorization forests \longrightarrow can hope for extension from strings to ranked trees
- Reuse ideas from Erik Paul's master thesis (Univ. Leipzig, 2015)
\longrightarrow proof "from scratch" of "main lemma" in a few pages
\longrightarrow dimension minimization for tree-to-anything MSO set interpretations follows by same syntactic argument as before
- No fully black-box reduction to known literature... but this "main lemma" on MSO set queries on trees entails a new(??) result:

Corollary

Given a tree automaton as input, the least $k \in \mathbb{N}$ such that it is $O\left(n^{k}\right)$-ambiguous is computable.
(also poly/exp ambiguity dichotomy: was explicitly stated by E. Paul)

Important examples of MSO set interpretation over trees (1)

Proposition

If $f: \operatorname{Tree}(\Gamma) \rightarrow \operatorname{Tree}(\Sigma)$ is defined by an MSO transduction with sharing, then it is also defined by some MSO set interpretation.
i.e. $f=($ Tree $(\Gamma) \xrightarrow[\text { i.e. 1-dim. MSO interpretation }]{\text { some MSO transduction }}$ rootedDAG $(\Sigma) \xrightarrow{\text { unfold }}$ Tree $(\Sigma))$

Important examples of MSO set interpretation over trees (1)

Proposition

If $f: \operatorname{Tree}(\Gamma) \rightarrow \operatorname{Tree}(\Sigma)$ is defined by an MSO transduction with sharing, then it is also defined by some MSO set interpretation.
i.e. $f=($ Tree $(\Gamma) \xrightarrow[\text { i.e. 1-dim. MSO interpretation }]{\text { some MSO transduction }}$ rootedDAG $(\Sigma) \xrightarrow{\text { unfold }}$ Tree $(\Sigma))$

$|f(t)|=\Theta\left(|t|^{2}\right)$ here; \exists example of growth $\Theta\left(2^{n}\right)$ (complete binary tree)

Important examples of MSO set interpretation over trees (2)

Proposition

If f is defined by an MSO transduction with sharing i.e. unfold \circ [MSO trans.] (or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround) then it is also defined by some MSO set interpretation.

- unfold is defined by a DAG-to-tree MSO set interpretation
(idea: output nodes $=$ input paths from the root)
- on arbitrary structures: $[$ MSO set interp. $] \circ[$ MSO trans. $] \subseteq[$ MSO set interp. $]$
(by the usual syntactic substitution argument)

Important examples of MSO set interpretation over trees (2)

Proposition

If f is defined by an MSO transduction with sharing i.e. unfold \circ [MSO trans.] (or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround) then it is also defined by some MSO set interpretation.

- unfold is defined by a DAG-to-tree MSO set interpretation
(idea: output nodes $=$ input paths from the root)
- on arbitrary structures: $[$ MSO set interp. $] \circ[$ MSO trans. $] \subseteq[$ MSO set interp. $]$ (by the usual syntactic substitution argument)
\Longrightarrow The growth rate theorem applies! new result on MSO trans. w/ sharing e.g. the example on previous slide admits a 2 -dim. interpretation

The linear growth case

In particular...
If f : Tree $(\Gamma) \rightarrow$ Tree (Σ) is defined by an MSO transduction $w /$ sharing (MSOTS) and $|f(t)|=O(|t|)$, then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet \& Maneth 2003] is very technical, has weaker assumption " f computed by some macro tree transducer" known: MSOTS \subseteq macro tree transducer \subseteq MSOTS \circ MSOTS

The linear growth case

In particular...

If $f:$ Tree $(\Gamma) \rightarrow$ Tree (Σ) is defined by an MSO transduction $w /$ sharing (MSOTS) and $|f(t)|=O(|t|)$, then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet \& Maneth 2003] is very technical, has weaker assumption " f computed by some macro tree transducer" known: MSOTS \subseteq macro tree transducer \subseteq MSOTS \circ MSOTS

Proposition

MSOTS \circ MSOTS \subseteq unfold $\circ[($ tree-to-DAG) MSO set interpretation]
MSOT \circ unfold \circ MSOT \equiv FOT \circ MSO relabeling \circ unfold \circ MSOT
$($ FOT $=$ first-order transductions $) \quad \subseteq$ FOT $\circ($ unfold \circ MSOT $) \circ$ MSOT

A linear growth argument

macro tree transducer \subseteq unfold \circ [(tree-to-DAG) MSO set interpretation]
Theorem - generalizing [Engelfriet \& Maneth 2003] thanks to the above
If $f=$ unfold $\circ[$ some MSO set interpretation $]$ and $|f(t)|=O(|t|)$,
then f is defined by some MSO transduction.

A linear growth argument

macro tree transducer \subseteq unfold \circ [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet \& Maneth 2003] thanks to the above

If $f=$ unfold \circ [some MSO set interpretation] and $|f(t)|=O(|t|)$,
then f is defined by some MSO transduction.
Since \mid unfold $(G)|\geq|G|$, the MSO set interpretation in the statement is $O(n)$ \Rightarrow by growth rate theorem on set interpretation, it's equivalent to an MSOT $\Rightarrow f=$ unfold $\circ[$ some MSOT $]$ and $|f(t)|=O(|t|)$
\rightsquigarrow conclude using theorem on MSOT w/ sharing $=$ unfold \circ MSOT! \square

A linear growth argument

macro tree transducer \subseteq unfold \circ [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet \& Maneth 2003] thanks to the above

If $f=$ unfold \circ [some MSO set interpretation] and $|f(t)|=O(|t|)$,
then f is defined by some MSO transduction.
Since \mid unfold $(G)|\geq|G|$, the MSO set interpretation in the statement is $O(n)$ \Rightarrow by growth rate theorem on set interpretation, it's equivalent to an MSOT $\Rightarrow f=$ unfold $\circ[$ some MSOT] and $|f(t)|=O(|t|)$
\rightsquigarrow conclude using theorem on MSOT w/ sharing $=$ unfold \circ MSOT! \square

Future work

Reprove the generalization of [Engelfriet, Inaba \& Maneth 2021] to entire composition hierarchy of MSOT w/ sharing, using similarly "clean" arguments

A linear growth argument

macro tree transducer \subseteq unfold \circ [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet \& Maneth 2003] thanks to the above

If $f=$ unfold \circ [some MSO set interpretation] and $|f(t)|=O(|t|)$,
then f is defined by some MSO transduction.
Since \mid unfold $(G)|\geq|G|$, the MSO set interpretation in the statement is $O(n)$ \Rightarrow by growth rate theorem on set interpretation, it's equivalent to an MSOT $\Rightarrow f=$ unfold $\circ[$ some MSOT $]$ and $|f(t)|=O(|t|)$
\rightsquigarrow conclude using theorem on MSOT w/sharing = unfold \circ MSOT! \square

Future work

Reprove the generalization of [Engelfriet, Inaba \& Maneth 2021] to entire composition hierarchy of MSOT w/ sharing, using similarly "clean" arguments

