Ambiguity/growth of tree automata/transducers
made easy via MSO queries

Lé Thanh Diing (Tito) Nguyén — nltdanguyentito.eu— ENS Lyon
joint work with Paul Gallot (Bremen) & Nathan Lhote (Aix-Marseille)
Séminaire LX, LaBRI, Bordeaux — 8 février 2023

1/16

What is an interesting class of finite-state computable functions?

Regular languages (L C X*): a robust notion

deterministic finite automata <= nondeterministic FA <= two-way FA

<= regular expressions <= monadic second-order logic (MSO) <= ...

What about functions f: 3* — I'*? ~~ consider transducers: automata with output

2/16

What is an interesting class of finite-state computable functions?

Regular languages (L C X*): a robust notion

deterministic finite automata <= nondeterministic FA <= two-way FA

<= regular expressions <= monadic second-order logic (MSO) <= ...

What about functions f: 3* — I'*? ~~ consider transducers: automata with output
Some equivalences don’t hold anymore, e.g. DFT C NFT! Several usual classes:

e Linear growth: |[f(w)| = O(|w|) for f: £¥* — I'* rational (NFT) / regular (MSO)
e Or hyperexponential growth (L-systems, iterated pushdown transducers, ...)

2/16

What is an interesting class of finite-state computable functions?

Regular languages (L C X*): a robust notion

deterministic finite automata <= nondeterministic FA <= two-way FA
<= regular expressions <= monadic second-order logic (MSO) <= ...

What about functions f: 3* — I'*? ~~ consider transducers: automata with output
Some equivalences don’t hold anymore, e.g. DFT C NFT! Several usual classes:

e Linear growth: |[f(w)| = O(|w|) for f: ¥* — I'* rational (NFT) / regular (MSO)
e Or hyperexponential growth (L-systems, iterated pushdown transducers, ...)

Complexity theory: feasible = P. What is the finite-state counterpart?

Proposal (Bojariczyk 2018): polyregular functions

Robust class of string functions, computed by pebble transducers (early 2000s)

2/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

(>lalblcl#lblafcl#]c|b]<]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

1
> [a

[blcl#|bfalcl#[c]b]a]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!
> [a

[blcl#|bfalcl#[c]b]a]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
U

1
> [a

[blcl#|bfalcl#[c]b]a]

Output:

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
U

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: a

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
U

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: ab

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
U

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abca

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcab

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcabc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcabc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcabc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcabc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

4

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcabc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

1
> [a

[blcl#|bfalcl#[c]b]a]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

]
(>lalb

| cl#lbfalcl#[c]b]a]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabe#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#b

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#ba

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

U
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bach

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacba

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

l
(clafblc]#|blalc|#|c|b]]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

]
(clafblc]#|blalc|#|c|b]]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#c

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

U
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y,

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbc

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

\Y

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

Y
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
]

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

J
!

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
(clafblc]#|blalc|#|c|b]]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

1
(clafblcl#|blalc|#|c]b

Output: abcabc#bacbac#cbcb

| <]

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

!
<

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

3/16

Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k > 1)

DFA (hidden in drawing) + stack of height < k of heads (“pebbles”)

“Inner squaring” innsq: wo# ... #w, — (wo)"# ... #(wn)"

(>lalblcl#lblafcl#]c|b]<]

Output: abcabc#bacbac#cbcb

Not shown here: heads are two-way ~» can compute e.g. reverse

3/16

Polyregular functions and their growth

e Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
o Lregular = f (L) regular
e Several alternative definitions in the last few years — revived interest
[Bojariczyk 2018, 2023; Bojariczyk, Kiefer & Lhote 2019]
e Polynomial growth: k pebbles = O(n*) growth

4/16

Polyregular functions and their growth

e Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
o Lregular = f (L) regular
e Several alternative definitions in the last few years — revived interest
[Bojariczyk 2018, 2023; Bojariczyk, Kiefer & Lhote 2019]
e Polynomial growth: k pebbles = O(n*) growth

What about the converse?
For w = wo# . .. #0y, | innsq(w)| = |(wo)"# ... #(wn)"| = O(|w]?)
— could innsq be computed with only 2 pebbles instead of 3?

4/16

Polyregular functions and their growth

e Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
o Lregular = f (L) regular
e Several alternative definitions in the last few years — revived interest
[Bojariczyk 2018, 2023; Bojariczyk, Kiefer & Lhote 2019]
e Polynomial growth: k pebbles = O(n*) growth

What about the converse?
For w = wo# . .. #0y, | innsq(w)| = |(wo)"# ... #(wn)"| = O(|w]?)
— could innsq be computed with only 2 pebbles instead of 3?

e Main theorem of a LICS'20 paper: O(nf) = computable with k pebbles

4/16

Polyregular functions and their growth

e Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
o Lregular = f (L) regular
e Several alternative definitions in the last few years — revived interest
[Bojariczyk 2018, 2023; Bojariczyk, Kiefer & Lhote 2019]
e Polynomial growth: k pebbles = O(n*) growth

What about the converse?
For w = wo# . .. #0y, | innsq(w)| = |(wo)"# ... #(wn)"| = O(|w]?)
— could innsq be computed with only 2 pebbles instead of 3?

e Main theorem of a LICS'20 paper: O(nf) = computable with k pebbles
e But actually, innsq requires 3 pebbles! [Bojariczyk 2023; Kiefer, N. & Pradic 2023]

4/16

Polyregular functions and their growth

e Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
o Lregular = f (L) regular
e Several alternative definitions in the last few years — revived interest
[Bojariczyk 2018, 2023; Bojariczyk, Kiefer & Lhote 2019]
e Polynomial growth: k pebbles = O(n*) growth

What about the converse?
For w = wo# . .. #0y, | innsq(w)| = |(wo)"# ... #(wn)"| = O(|w]?)
— could innsq be computed with only 2 pebbles instead of 3?

e Main theorem of a LICS'20 paper: O(nf) = computable with k pebbles
e But actually, innsq requires 3 pebbles! [Bojariczyk 2023; Kiefer, N. & Pradic 2023]
e We will be able to realize innsq with 2 “pointers to input” using logic

4/16

Logical transductions

Example: w — al®l . reverse(w)

abac a aaacaba
1234 AL A2 A3 M p4 p3 p2 pl
I={\p} a(Xi) = true, a(pi) = (wli] = a) AL <A2 << p2<pl

5/16

Logical transductions

Example: w — al®l . reverse(w)

abac a aaacaba

1234 AL A2 A3 M p4 p3 p2 pl
I={\p} a(Xi) = true, a(pi) = (wli] = a) AL <A2 << p2<pl
Idea: for an input word w € I'*, define over z,z’ € I x {1,..., |w|}

unary relations a(z) fora € ¥ 4+ abinary relation z < 2’

if we’re lucky, the result is isomorphic to an output word f(w) € £*

5/16

MSO transductions

Reminder on Monadic Second-Order logic

MSO formula: ¢(x1,...,x,), the xi refer to positions of a word w (1 < x < |w|)

o, m=a(x) [x <y | |IX @ |xeX[pAY |
~~ ——

position x has label a XCpositions

1960s: L C I'* regular language <= Jdp.L={w € ¥* |wF ¢} (forn =0)

MSO transduction = finite set I + ¢/, (x) + go’;’j(x, y)forae Yandi,jel

6/16

MSO transductions

Reminder on Monadic Second-Order logic

MSO formula: ¢(x1,...,x,), the xi refer to positions of a word w (1 < x < |w|)
o, m=a(x) [x <y | |IX @ |xeX[pAY |
~— ——
position x has label a XCpositions

1960s: L C I'* regular language <= Jdp.L={w € ¥* |wF ¢} (forn =0)

MSO transduction = finite set I + ¢/, (x) + go’;’j(x, y)forae Yandi,jel

Theorem [Engelfriet & Hoogeboom 2001]

String-to-string MSO transductions = 1-pebble (i.e. “two-way”) transducers

(Not too hard once you know these transducers are closed under composition)

— this is called the class of reqular functions
6/16

MSO interpretations in higher dimension

MSO interpretation I'* — X* = choose dimension k € N, a finite set I & formulas

gofl(xl,...,xk)foruEE cplj(xl,...,xk,yl,...,yk) i,jel

w € T* — relations a(—) and < over I x {1,..., |w|}*
again, if we're lucky, this structure is isomorphic to some f(w) € £*

7/16

MSO interpretations in higher dimension

MSO interpretation I'* — X* = choose dimension k € N, a finite set I & formulas

o (x1,. .., %) fora € & O (X1, X YLy -5 k) i,jel
w € T* — relations a(—) and < over I x {1,..., |w|}*
again, if we're lucky, this structure is isomorphic to some f(w) € £*

Theorem [Bojariczyk, Kiefer & Lhote 2019]

String-to-string MSO interpretations = polyregular functions

e Highly technical proof using finite model theory
e Somewhat “unnatural”: no reason a priori for MSO interpretations
to preserve regular languages by inverse image
whereas MSO transductions (1-dim.) compose by syntactic substitution

7/16

Example of MSO interpretation

innsq : wo# ... #w, — (wo)" ... (w,)" has a dim. 2 (optimal) interpretation:
acab#abba#c

acab abba c

) — (acab)(acab)(abba)(abba)(c)(c)

acab abba c

8/16

Example of MSO interpretation

innsq : wo# ... #w, — (wo)" ... (w,)" has a dim. 2 (optimal) interpretation:
acab#abba#c

acab abba c

) — (acab)(acab)(abba)(abba)(c)(c)

acab abba c

° @a(xl,xz) = a(xl) A #(JQ)
o . (x1,x2,y1,y2) = Ix3,y3. which begin blocks containing resp. x1, 11
and (x3,x2,x1) < (¥3,Y2,y1) lex. — pebbles |, ||,V

8/16

Dimension minimisation

Theorem [Bojaniczyk 2023
MSO interpretations of dim. k on strings = polyregular fn with growth O(n*)

9/16

Dimension minimisation

Theorem [Bojaniczyk 2023

MSO interpretations of dim. k on strings = polyregular fn with growth O(n*)

Fundamentally, it’s not about interpretations, it’s about queries:

Main lemma

Let ¢(x1,...,x¢) be an MSO formula over I'*. One can compute:

e the least k € N such that |{(i1,...,i) | w = @(i1, ... ,i)}| = O(Jw|¥) (so k < £);
o (x1,...,X0,21,...,2¢) and B € N such that for every w € I'*,

[le,...,jk, |{(i1,...,iz) |w l:’L/J(Z'l,...,l'[,jl,...,]'k)}‘ § B,’
[Vil,...,ig, W':(p(il,...,ig) = |{(jl,...7jk)|w}:¢(i1,...,i@,]'],...,jk)}|:1.

Suffices to derive the theorem by simple syntactic “reparametrization”
9/16

MSO query reparametrization made easy

e Bojanczyk proves (something more precise than) the Main Lemma via
compositionality of MSO + factorisation forests

e This is overkill: the Main Lemma reduces to a structure theorem on
polynomially ambiguous automata, obtained by “simple-minded” pumping
origin: [Seidl & Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot & Gastin 2020]

10/16

MSO query reparametrization made easy

e Bojaniczyk proves (something more precise than) the Main Lemma via
compositionality of MSO + factorisation forests
e This is overkill: the Main Lemma reduces to a structure theorem on
polynomially ambiguous automata, obtained by “simple-minded” pumping
origin: [Seidl & Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot & Gastin 2020]

Connection between MSO queries and ambiguous automata

©(x1,...,x7) ~» DFA recognizing words with ¢ marked positions

NFA recognizing words without marks
projection (I'x{0,1}£)*—T'*

Ambiguity (nb of runs) of NFA on w € I'* = nb of “w+marks” accepted by DFA
= nb of query matches on w

10/16

MSO set queries and set interpretations

Connection between MSO set queries and ambiguous automata

(X1, .., X¢) ~ DFA recognizing words with {0, 1}¢-coloring
NFA izi ds with: 1
variables ranging over subsets of positions — recognizing words without colors

Ambiguity of NFA on w € I'* = nb of “w+colors” accepted by DFA
———
now possibly exponential = nb of query matches on w

11/16

MSO set queries and set interpretations

Connection between MSO set queries and ambiguous automata

(X1, .., X¢) ~ DFA recognizing words with {0, 1}¢-coloring
SN——— P . h 1
variables ranging over subsets of positions — NFAT ecognizing words without colors

Ambiguity of NFA on w € I'* = nb of “w+colors” accepted by DFA
———
now possibly exponential = nb of query matches on w

Structure thm of poly. amb. NFA —> can determine whether nb of matches of ¢
is O(r¥), and if so, compute reparametrization (X1, ..., X, 21, .. ., Z)

Corollary: generalization of Bojariczyk’s dimension minimization theorem

MSO set interpretation of growth O(n¥) = MSO interpretation of dim. k

def: specified by ¢,(X1,...,Xe) + o<(X1,...,Xs, Y1,...,Ys) [Colcombet & Léding 2007]

11/16

Generalization to trees

e Simple pumping (pigeonhole principle) instead of factorization forests
— can hope for extension from strings to ranked trees

12/16

Generalization to trees

e Simple pumping (pigeonhole principle) instead of factorization forests
— can hope for extension from strings to ranked trees
e Reuse ideas from Erik Paul’s master thesis (Univ. Leipzig, 2015)
— proof “from scratch” of “main lemma” in a few pages
— dimension minimization for tree-to-anything MSO set interpretations
follows by same syntactic argument as before

12/16

Generalization to trees

e Simple pumping (pigeonhole principle) instead of factorization forests
— can hope for extension from strings to ranked trees
e Reuse ideas from Erik Paul’s master thesis (Univ. Leipzig, 2015)
— proof “from scratch” of “main lemma” in a few pages
— dimension minimization for tree-to-anything MSO set interpretations
follows by same syntactic argument as before
e No fully black-box reduction to known literature...

but this “main lemma” on MSO set queries on trees entails a new (??) result:

Corollary
Given a tree automaton as input, the least k € N such that it is O(n*)-ambiguous

is computable. (also poly/exp ambiguity dichotomy: was explicitly stated by E. Paul)

12/16

Important examples of MSO set interpretation over trees (1)

If f: Tree(I') — Tree(X) is defined by an MSO transduction with sharing,
then it is also defined by some MSO set interpretation.

i.e.f: (Tree(F) some MSO transduction rootedDAG(E) unfold Tree(E))

i.e. 1-dim. MSO interpretation

S

| b<”\ SN
S - -

| b/il b b/a
0 Y e e

13/16

Important examples of MSO set interpretation over trees (1)

If f: Tree(I') — Tree(X) is defined by an MSO transduction with sharing,
then it is also defined by some MSO set interpretation.

i.e.f: (Tree(F) some MSO transduction rootedDAG(E) unfold Tree(E))

i.e. 1-dim. MSO interpretation

S a a
| TN 5N
S a - | a
| b/l b b
0 Sy e e

f(t)| = ©(|t*) here; 3 example of growth ©(2") (complete binary tree)

13/16

Important examples of MSO set interpretation over trees (2)

If f is defined by an MSO transduction with sharing i.e. unfold o [MSO trans.|

(or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround)

then it is also defined by some MSO set interpretation.

e unfoldis defined by a DAG-to-tree MSO set interpretation

(idea: output nodes = input paths from the root)

e on arbitrary structures: [MSO set interp.] o [MSO trans.] C [MSO set interp.|

(by the usual syntactic substitution argument)

14/16

Important examples of MSO set interpretation over trees (2)

If f is defined by an MSO transduction with sharing i.e. unfold o [MSO trans.|

(or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround)

then it is also defined by some MSO set interpretation.

e unfoldis defined by a DAG-to-tree MSO set interpretation

(idea: output nodes = input paths from the root)

e on arbitrary structures: [MSO set interp.] o [MSO trans.] C [MSO set interp.|

(by the usual syntactic substitution argument)

— The growth rate theorem applies! new result on MSO trans. w/ sharing
e.g. the example on previous slide admits a 2-dim. interpretation

14/16

The linear growth case

In particular...

If f: Tree(I') — Tree(X) is defined by an MSO transduction w/ sharing (MSOTS)
and [f(t)| = O(|t|), then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet & Maneth 2003] is very
technical, has weaker assumption “f computed by some macro tree transducer”

known: MSOTS C macro tree transducer C MSOTS o MSOTS

15/16

The linear growth case

In particular...

If f: Tree(I') — Tree(X) is defined by an MSO transduction w/ sharing (MSOTS)
and [f(t)| = O(|t|), then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet & Maneth 2003] is very
technical, has weaker assumption “f computed by some macro tree transducer”

known: MSOTS C macro tree transducer C MSOTS o MSOTS
MSOTS o MSOTS C unfold o [(tree-to-DAG) MSO set interpretation)]
MSOT o unfold o MSOT = FOT o MSO relabeling o unfold o MSOT
(FOT = first-order transductions) C FOT o (unfold o MSOT) o MSOT

unfold vs relabeling “commutation lemma”: 3 something similar in Carayol’s PhD 15/16

A linear growth argument

macro tree transducer C unfold o [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet & Maneth 2003] thanks to the above

If f = unfold o [some MSO set interpretation] and |f(t)| = O(|t|),
then f is defined by some MSO transduction.

16/16

A linear growth argument

macro tree transducer C unfold o [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet & Maneth 2003] thanks to the above

If f = unfold o [some MSO set interpretation] and |f(t)| = O(|t|),
then f is defined by some MSO transduction.

Since |unfold(G)| > |G|, the MSO set interpretation in the statement is O(n)

= by growth rate theorem on set interpretation, it’s equivalent to an MSOT
= f = unfold o [some MSOT] and |f(t)| = O(|t|)
~» conclude using theorem on MSOT w/ sharing = unfold o MSOT! [

16/16

A linear growth argument

macro tree transducer C unfold o [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet & Maneth 2003] thanks to the above

If f = unfold o [some MSO set interpretation] and |f(t)| = O(|t|),
then f is defined by some MSO transduction.

Since |unfold(G)| > |G|, the MSO set interpretation in the statement is O(n)
= by growth rate theorem on set interpretation, it’s equivalent to an MSOT
= f = unfold o [some MSOT] and |f(t)| = O(|t|)

~+ conclude using theorem on MSOT w/ sharing = unfold o MSOT! [

Future work

Reprove the generalization of [Engelfriet, Inaba & Maneth 2021] to entire
composition hierarchy of MSOT w/ sharing, using similarly “clean” arguments

16/16

A linear growth argument

macro tree transducer C unfold o [(tree-to-DAG) MSO set interpretation]

Theorem - generalizing [Engelfriet & Maneth 2003] thanks to the above

If f = unfold o [some MSO set interpretation] and |f(t)| = O(|t|),
then f is defined by some MSO transduction.

Since |unfold(G)| > |G|, the MSO set interpretation in the statement is O(n)
= by growth rate theorem on set interpretation, it’s equivalent to an MSOT
= f = unfold o [some MSOT] and |f(t)| = O(|t|)

~+ conclude using theorem on MSOT w/ sharing = unfold o MSOT! [

Future work

Reprove the generalization of [Engelfriet, Inaba & Maneth 2021] to entire
composition hierarchy of MSOT w/ sharing, using similarly “clean” arguments

16/16

