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What is an interesting class of finite-state computable functions?

Regular languages (L ⊆ Σ∗): a robust notion
deterministic finite automata ⇐⇒ nondeterministic FA ⇐⇒ two-way FA
⇐⇒ regular expressions ⇐⇒ monadic second-order logic (MSO) ⇐⇒ …

What about functions f : Σ∗ → Γ∗? ⇝ consider transducers: automata with output

Some equivalences don’t hold anymore, e.g. DFT ⊊ NFT! Several usual classes:

• Linear growth: |f(w)| = O(|w|) for f : Σ∗ → Γ∗ rational (NFT) / regular (MSO)
• Or hyperexponential growth (L-systems, iterated pushdown transducers, …)

Complexity theory: feasible = P. What is the finite-state counterpart?
Proposal (Bojańczyk 2018): polyregular functions
Robust class of string functions, computed by pebble transducers (early 2000s)
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Pebble transducers [Milo, Suciu & Vianu 2000; Engelfriet & Maneth 2002]

Polyregular functions = computed by k-pebble transducers (k ≥ 1)
DFA (hidden in drawing) + stack of height ⩽ k of heads (“pebbles”)

“Inner squaring” innsq : w0# . . .#wn 7−→ (w0)
n# . . .#(wn)

n

▷ a b c # b a c # c b ◁

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
↓

▽ ▽ ▽ ▽

↓ ↓ ↓ ↓

▽ ▽ ▽ ▽

↓ ↓ ↓ ↓

▽ ▽ ▽

↓ ↓

Output:

abcabc#bacbac#cbcb
Not shown here: heads are two-way⇝ can compute e.g. reverse
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Polyregular functions and their growth

• Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
• L regular =⇒ f−1(L) regular

• Several alternative definitions in the last few years → revived interest
[Bojańczyk 2018, 2023; Bojańczyk, Kiefer & Lhote 2019]

• Polynomial growth: k pebbles =⇒ O(nk) growth

What about the converse?
For w = w0# . . .#wn, |innsq(w)| = |(w0)n# . . .#(wn)n| = O(|w|2)

−→ could innsq be computed with only 2 pebbles instead of 3?

• Main theorem of a LICS’20 paper: O(nk) =⇒ computable with k pebbles
• But actually, innsq requires 3 pebbles! [Bojańczyk 2023; Kiefer, N. & Pradic 2023]
• We will be able to realize innsq with 2 “pointers to input” using logic
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Logical transductions

Example: w 7→ a|w| · reverse(w)
a
1
b
2
a
3
c
4 ⇝ a

λ1
a
λ2

a
λ3

a
λ4

c
ρ4

a
ρ3

b
ρ2

a
ρ1

I = {λ, ρ} a(λi) = true, a(ρi) = (w[i] = a) λ1 ≺ λ2 ≺ · · · ≺ ρ2 ≺ ρ1

Idea: for an input word w ∈ Γ∗, define over z, z′ ∈ I× {1, . . . , |w|}

unary relations a(z) for a ∈ Σ + a binary relation z ≺ z′

if we’re lucky, the result is isomorphic to an output word f(w) ∈ Σ∗
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MSO transductions

Reminder on Monadic Second-Order logic
MSO formula: φ(x1, . . . , xn), the xk refer to positions of a word w (1 ≤ xk ≤ |w|)

φ,ψ ::= a(x)︸︷︷︸
position x has label a

| x < y | ∃x. φ | ∃X. φ︸ ︷︷ ︸
X⊆positions

| x ∈ X | φ ∧ ψ | ¬φ

1960s: L ⊆ Γ∗ regular language ⇐⇒ ∃φ. L = {w ∈ Σ∗ | w ⊨ φ} (for n = 0)

MSO transduction = finite set I + φi
a(x) + φ

i,j
≺(x, y) for a ∈ Σ and i, j ∈ I

Theorem [Engelfriet & Hoogeboom 2001]
String-to-string MSO transductions ≡ 1-pebble (i.e. “two-way”) transducers

(Not too hard once you know these transducers are closed under composition)

−→ this is called the class of regular functions
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MSO interpretations in higher dimension

MSO interpretation Γ∗ → Σ∗ = choose dimension k ∈ N, a finite set I & formulas

φi
a(x1, . . . , xk) for a ∈ Σ φ

i,j
≺(x1, . . . , xk, y1, . . . , yk) i, j ∈ I

w ∈ Γ∗ 7−→ relations a(−) and ≺ over I× {1, . . . , |w|}k
again, if we’re lucky, this structure is isomorphic to some f(w) ∈ Σ∗

Theorem [Bojańczyk, Kiefer & Lhote 2019]
String-to-string MSO interpretations = polyregular functions

• Highly technical proof using finite model theory
• Somewhat “unnatural”: no reason a priori for MSO interpretations

to preserve regular languages by inverse image
whereas MSO transductions (1-dim.) compose by syntactic substitution
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Example of MSO interpretation

innsq′ : w0# . . .#wn 7−→ (w0)n . . . (wn)n has a dim. 2 (optimal) interpretation:

acab#abba#c
... · · ·
# acab abba c
... · · ·
# acab abba c
... · · ·

−→ (acab)(acab)(abba)(abba)(c)(c)

• φa(x1, x2) = a(x1) ∧#(x2)
• φ≺(x1, x2, y1, y2) = ∃x3, y3. which begin blocks containing resp. x1, y1

and (x3, x2, x1) < (y3, y2, y1) lex. −→ pebbles ↓,⇓,▽
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Dimension minimisation

Theorem [Bojańczyk 2023]
MSO interpretations of dim. k on strings = polyregular fn with growth O(nk)

Fundamentally, it’s not about interpretations, it’s about queries:
Main lemma
Let φ(x1, . . . , xℓ) be an MSO formula over Γ∗. One can compute:

• the least k ∈ N such that |{(i1, . . . , iℓ) | w |= φ(i1, . . . , iℓ)}| = O(|w|k) (so k ≤ ℓ);
• ψ(x1, . . . , xℓ, z1, . . . , zk) and B ∈ N such that for every w ∈ Γ∗,

• ∀j1, . . . , jk, |{(i1, . . . , iℓ) | w |= ψ(i1, . . . , iℓ, j1, . . . , jk)}| ≤ B;
• ∀i1, . . . , iℓ, w |= φ(i1, . . . , iℓ) =⇒ |{(j1, . . . , jk) | w |= ψ(i1, . . . , iℓ, j1, . . . , jk)}| = 1.

Suffices to derive the theorem by simple syntactic “reparametrization”
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MSO query reparametrization made easy

• Bojańczyk proves (something more precise than) the Main Lemma via
compositionality of MSO + factorisation forests

• This is overkill: the Main Lemma reduces to a structure theorem on
polynomially ambiguous automata, obtained by “simple-minded” pumping

origin: [Seidl & Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot & Gastin 2020]

Connection between MSO queries and ambiguous automata
φ(x1, . . . , xℓ)⇝ DFA recognizing words with ℓmarked positions

−−−−−−−−−−−−−−−−−→
projection (Γ×{0,1}ℓ)∗→Γ∗

NFA recognizing words without marks

Ambiguity (nb of runs) of NFA on w ∈ Γ∗ = nb of “w+marks” accepted by DFA
= nb of query matches on w
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MSO set queries and set interpretations

Connection between MSO set queries and ambiguous automata
φ(X1, . . . ,Xℓ︸ ︷︷ ︸
variables ranging over subsets of positions

)⇝ DFA recognizing words with {0, 1}ℓ-coloring
−→ NFA recognizing words without colors

Ambiguity︸ ︷︷ ︸
now possibly exponential

of NFA on w ∈ Γ∗ = nb of “w+colors” accepted by DFA
= nb of query matches on w

Structure thm of poly. amb. NFA =⇒ can determine whether nb of matches of φ
is O(nk), and if so, compute reparametrization ψ(X1, . . . ,Xℓ, z1, . . . , zk)

Corollary: generalization of Bojańczyk’s dimension minimization theorem

MSO set interpretation of growth O(nk) ≡ MSO interpretation of dim. k

def: specified by φa(X1, . . . ,Xℓ) + φ≺(X1, . . . ,Xℓ,Y1, . . . ,Yℓ) [Colcombet & Löding 2007]
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Generalization to trees

• Simple pumping (pigeonhole principle) instead of factorization forests
−→ can hope for extension from strings to ranked trees

• Reuse ideas from Erik Paul’s master thesis (Univ. Leipzig, 2015)
−→ proof “from scratch” of “main lemma” in a few pages
−→ dimension minimization for tree-to-anything MSO set interpretations

follows by same syntactic argument as before
• No fully black-box reduction to known literature…

but this “main lemma” on MSO set queries on trees entails a new(??) result:

Corollary
Given a tree automaton as input, the least k ∈ N such that it is O(nk)-ambiguous
is computable. (also poly/exp ambiguity dichotomy: was explicitly stated by E. Paul)
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Important examples of MSO set interpretation over trees (1)

Proposition
If f : Tree(Γ) → Tree(Σ) is defined by an MSO transduction with sharing,

then it is also defined by some MSO set interpretation.

i.e. f = (Tree(Γ) some MSO transduction−−−−−−−−−−−−−−−−−−→
i.e. 1-dim. MSO interpretation

rootedDAG(Σ)
unfold−−−−−→ Tree(Σ))

S

S

0

7→

a
b

a
b

c

7→

a
b

a
bb

ccc

|f(t)| = Θ(|t|2) here; ∃ example of growth Θ(2n) (complete binary tree)
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Important examples of MSO set interpretation over trees (2)

Proposition
If f is defined by an MSO transduction with sharing i.e. unfold ◦ [MSO trans.]
(or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround)

then it is also defined by some MSO set interpretation.

• unfold is defined by a DAG-to-tree MSO set interpretation
(idea: output nodes = input paths from the root)

• on arbitrary structures: [MSO set interp.] ◦ [MSO trans.] ⊆ [MSO set interp.]
(by the usual syntactic substitution argument)

=⇒ The growth rate theorem applies! new result on MSO trans. w/ sharing
e.g. the example on previous slide admits a 2-dim. interpretation

14/16



Important examples of MSO set interpretation over trees (2)

Proposition
If f is defined by an MSO transduction with sharing i.e. unfold ◦ [MSO trans.]
(or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround)

then it is also defined by some MSO set interpretation.

• unfold is defined by a DAG-to-tree MSO set interpretation
(idea: output nodes = input paths from the root)

• on arbitrary structures: [MSO set interp.] ◦ [MSO trans.] ⊆ [MSO set interp.]
(by the usual syntactic substitution argument)

=⇒ The growth rate theorem applies! new result on MSO trans. w/ sharing
e.g. the example on previous slide admits a 2-dim. interpretation

14/16



The linear growth case

In particular…
If f : Tree(Γ) → Tree(Σ) is defined by an MSO transduction w/ sharing (MSOTS)
and |f(t)| = O(|t|), then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet & Maneth 2003] is very
technical, has weaker assumption “f computed by some macro tree transducer”

known: MSOTS ⊆ macro tree transducer ⊆ MSOTS ◦MSOTS

Proposition
MSOTS ◦MSOTS ⊆ unfold ◦ [(tree-to-DAG) MSO set interpretation]

MSOT ◦ unfold ◦MSOT ≡ FOT ◦MSO relabeling ◦ unfold ◦MSOT
(FOT = first-order transductions) ⊆ FOT ◦ (unfold ◦MSOT) ◦MSOT

unfold vs relabeling “commutation lemma”: ∃ something similar in Carayol’s PhD
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A linear growth argument

Thanks for your attention!

macro tree transducer ⊆ unfold ◦ [(tree-to-DAG) MSO set interpretation]
Theorem – generalizing [Engelfriet & Maneth 2003] thanks to the above
If f = unfold ◦ [some MSO set interpretation] and |f(t)| = O(|t|),

then f is defined by some MSO transduction.

Since |unfold(G)| ≥ |G|, the MSO set interpretation in the statement is O(n)
⇒ by growth rate theorem on set interpretation, it’s equivalent to an MSOT
⇒ f = unfold ◦ [some MSOT] and |f(t)| = O(|t|)
⇝ conclude using theorem on MSOT w/ sharing = unfold ◦MSOT!
Future work
Reprove the generalization of [Engelfriet, Inaba & Maneth 2021] to entire
composition hierarchy of MSOT w/ sharing, using similarly “clean” arguments
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