Ambiguity/growth of tree automata/transducers made easy via MSO queries

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu — ÉNS Lyon joint work with Paul Gallot (Bremen) & Nathan Lhote (Aix–Marseille)

Séminaire LX, LaBRI, Bordeaux — 8 février 2023

What is an interesting class of finite-state computable functions?

Regular languages ($L \subseteq \Sigma^*$): a robust notion

deterministic finite automata \iff nondeterministic FA \iff two-way FA \iff regular expressions \iff monadic second-order logic (MSO) \iff ...

What about *functions* $f: \Sigma^* \to \Gamma^*$? \rightsquigarrow consider *transducers*: automata with output

What is an interesting class of finite-state computable functions?

Regular languages $(L \subseteq \Sigma^*)$: a robust notion

deterministic finite automata \iff nondeterministic FA \iff two-way FA \iff regular expressions \iff monadic second-order logic (MSO) \iff ...

What about *functions* $f: \Sigma^* \to \Gamma^*? \rightsquigarrow$ consider *transducers*: automata with output Some equivalences don't hold anymore, e.g. DFT \subsetneq NFT! Several usual classes:

- Linear growth: |f(w)| = O(|w|) for $f: \Sigma^* \to \Gamma^*$ rational (NFT) / regular (MSO)
- Or hyperexponential growth (L-systems, iterated pushdown transducers, ...)

What is an interesting class of finite-state computable functions?

Regular languages $(L \subseteq \Sigma^*)$: a robust notion

deterministic finite automata \iff nondeterministic FA \iff two-way FA \iff regular expressions \iff monadic second-order logic (MSO) \iff ...

What about *functions* $f: \Sigma^* \to \Gamma^*$? \rightsquigarrow consider *transducers*: automata with output Some equivalences don't hold anymore, e.g. DFT \subsetneq NFT! Several usual classes:

- Linear growth: |f(w)| = O(|w|) for $f: \Sigma^* \to \Gamma^*$ rational (NFT) / regular (MSO)
- Or hyperexponential growth (L-systems, iterated pushdown transducers, ...)

Complexity theory: feasible = P. What is the finite-state counterpart?

Proposal (Bojańczyk 2018): polyregular functions

Robust class of string functions, computed by *pebble transducers* (early 2000s)

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Output: *a*

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Output: *ab*

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Output: *abc*

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ $\downarrow \downarrow$

 $\square a \quad b \quad c \quad \# \quad b \quad a \quad c \quad \# \quad c \quad b \quad \triangleleft$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ \downarrow \downarrow \triangleright a b c # b a c # c b \triangleleft

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ \downarrow \downarrow \triangleright a b c # b a c # c b \triangleleft

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ \downarrow \downarrow \triangleright a b c # b a c # c b \triangleleft

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ \downarrow \downarrow \triangleright a b c # b a c # c b \triangleleft

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ \downarrow \downarrow $\triangleright \quad a \quad b \quad c \quad \# \quad b \quad a \quad c \quad \# \quad c \quad b \quad \triangleleft$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \dots \# w_n \longmapsto (w_0)^n \# \dots \# (w_n)^n$ \downarrow \triangleright a b c # b a c # c b \triangleleft

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" $innsq: w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

 \triangleright a b c # b a c # c b \triangleleft

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Polyregular functions = computed by *k***-pebble transducers** ($k \ge 1$)

DFA (hidden in drawing) + *stack* of height $\leq k$ of heads ("pebbles")

"Inner squaring" innsq: $w_0 \# \ldots \# w_n \longmapsto (w_0)^n \# \ldots \# (w_n)^n$

Output: *abcabc#bacbac#cbcb*

Not shown here: heads are *two-way* ~> can compute e.g. *reverse*

Polyregular functions and their growth

- Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
 - L regular $\implies f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest

[Bojańczyk 2018, 2023; Bojańczyk, Kiefer & Lhote 2019]

• Polynomial growth: k pebbles $\implies O(n^k)$ growth

Polyregular functions and their growth

- Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
 - L regular $\implies f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest

[Bojańczyk 2018, 2023; Bojańczyk, Kiefer & Lhote 2019]

• Polynomial growth: k pebbles $\implies O(n^k)$ growth

What about the converse?

For $w = w_0 \# \dots \# w_n$, $|innsq(w)| = |(w_0)^n \# \dots \# (w_n)^n| = O(|w|^2)$ \longrightarrow could *innsq* be computed with only 2 pebbles instead of 3?

Polyregular functions and their growth

- Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
 - L regular $\implies f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest

[Bojańczyk 2018, 2023; Bojańczyk, Kiefer & Lhote 2019]

• Polynomial growth: k pebbles $\implies O(n^k)$ growth

What about the converse?

For $w = w_0 \# \dots \# w_n$, $|innsq(w)| = |(w_0)^n \# \dots \# (w_n)^n| = O(|w|^2)$ \longrightarrow could *innsq* be computed with only 2 pebbles instead of 3?

• Main theorem of a LICS'20 paper: $O(n^k) \implies$ computable with *k* pebbles
Polyregular functions and their growth

- Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
 - L regular $\implies f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest

[Bojańczyk 2018, 2023; Bojańczyk, Kiefer & Lhote 2019]

• Polynomial growth: k pebbles $\implies O(n^k)$ growth

What about the converse?

For $w = w_0 \# \dots \# w_n$, $|innsq(w)| = |(w_0)^n \# \dots \# (w_n)^n| = O(|w|^2)$ \longrightarrow could *innsq* be computed with only 2 pebbles instead of 3?

- Main theorem of a LICS'20 paper: $O(n^k) \implies$ computable with *k* pebbles
- But actually, *innsq* requires 3 pebbles! [Bojańczyk 2023; Kiefer, N. & Pradic 2023]

Polyregular functions and their growth

- Closed under composition [Engelfriet & Maneth 2002; Engelfriet 2015]
 - L regular $\implies f^{-1}(L)$ regular
- Several alternative definitions in the last few years \rightarrow revived interest

[Bojańczyk 2018, 2023; Bojańczyk, Kiefer & Lhote 2019]

• Polynomial growth: k pebbles $\implies O(n^k)$ growth

What about the converse?

For $w = w_0 \# \dots \# w_n$, $|innsq(w)| = |(w_0)^n \# \dots \# (w_n)^n| = O(|w|^2)$ \longrightarrow could *innsq* be computed with only 2 pebbles instead of 3?

- Main theorem of a LICS'20 paper: $O(n^k) \implies$ computable with *k* pebbles
- But actually, *innsq* requires 3 pebbles! [Bojańczyk 2023; Kiefer, N. & Pradic 2023]
- We will be able to realize *innsq* with 2 "pointers to input" using *logic*

Example: $w \mapsto a$	$^{ w } \cdot \mathit{reverse}(w)$		
	abac 兴	aaaacal	b a
	1234	$\lambda 1 \lambda 2 \lambda 3 \lambda 4 \rho 4 \rho 3 \rho$	2 ho 1
$I = \{\lambda, \rho\}$	$a(\lambda i) = true, a(ho)$	p(i) = (w[i] = a)	$\lambda 1 \prec \lambda 2 \prec \cdots \prec \rho 2 \prec \rho 1$

Example: $w \mapsto a^{ }$	$ w \cdot \textit{reverse}(w)$		
	$a b a c \longrightarrow$	aaaacab	o a
	1234	$\lambda 1 \lambda 2 \lambda 3 \lambda 4 \rho 4 \rho 3 \rho 3$	2 <i>ρ</i> 1
$I = \{\lambda, \rho\}$	$a(\lambda i) = true, a(ho i)$) = (w[i] = a)	$\lambda 1 \prec \lambda 2 \prec \cdots \prec \rho 2 \prec \rho 1$

Idea: for an input word $w \in \Gamma^*$, define over $z, z' \in I \times \{1, \ldots, |w|\}$

unary relations a(z) for $a \in \Sigma$ + a binary relation $z \prec z'$

if we're lucky, the result is isomorphic to an output word $f(w) \in \Sigma^*$

MSO transductions

Reminder on Monadic Second-Order logic

MSO formula: $\varphi(x_1, ..., x_n)$, the x_k refer to *positions* of a word w $(1 \le x_k \le |w|)$

$$\varphi, \psi ::= \underbrace{a(x)}_{\text{position } x \text{ has label } a} | x < y | \exists x. \varphi | \underbrace{\exists X. \varphi}_{X \subseteq \text{positions}} | x \in X | \varphi \land \psi | \neg \varphi$$

1960s: $L \subseteq \Gamma^*$ regular language $\iff \exists \varphi. \ L = \{w \in \Sigma^* \mid w \vDash \varphi\}$ (for n = 0)

<u>MSO transduction</u> = finite set $I + \varphi_a^i(x) + \varphi_{\prec}^{i,j}(x,y)$ for $a \in \Sigma$ and $i, j \in I$

MSO transductions

Reminder on Monadic Second-Order logic

MSO formula: $\varphi(x_1, \ldots, x_n)$, the x_k refer to *positions* of a word w $(1 \le x_k \le |w|)$

$$\varphi, \psi ::= \underbrace{a(x)}_{\text{position } x \text{ has label } a} | x < y | \exists x. \varphi | \underbrace{\exists X. \varphi}_{X \subseteq \text{positions}} | x \in X | \varphi \land \psi | \neg \varphi$$

1960s: $L \subseteq \Gamma^*$ regular language $\iff \exists \varphi. \ L = \{w \in \Sigma^* \mid w \vDash \varphi\}$ (for n = 0)

<u>MSO transduction</u> = finite set $I + \varphi_a^i(x) + \varphi_{\prec}^{i,j}(x,y)$ for $a \in \Sigma$ and $i, j \in I$

Theorem [Engelfriet & Hoogeboom 2001]

 $\begin{array}{l} \mbox{String-to-string MSO transductions} \equiv 1\mbox{-pebble (i.e. "two-way") transducers} \\ \mbox{(Not too hard once you know these transducers are closed under composition)} \end{array}$

 \longrightarrow this is called the class of *regular functions*

MSO interpretations in higher dimension

MSO interpretation $\Gamma^* \to \Sigma^*$ = choose *dimension* $k \in \mathbb{N}$, a finite set *I* & formulas

 $\varphi_a^i(x_1,\ldots,x_k)$ for $a \in \Sigma$ $\varphi_\prec^{i,j}(x_1,\ldots,x_k,y_1,\ldots,y_k)$ $i,j \in I$

 $w \in \Gamma^* \longmapsto$ relations a(-) and \prec over $I \times \{1, \ldots, |w|\}^k$

again, if we're lucky, this structure is isomorphic to some $f(w) \in \Sigma^*$

MSO interpretations in higher dimension

MSO interpretation $\Gamma^* \to \Sigma^*$ = choose *dimension* $k \in \mathbb{N}$, a finite set *I* & formulas

 $\varphi_a^i(x_1,\ldots,x_k)$ for $a \in \Sigma$ $\varphi_\prec^{i,j}(x_1,\ldots,x_k,y_1,\ldots,y_k)$ $i,j \in I$

 $w \in \Gamma^* \longmapsto$ relations a(-) and \prec over $I \times \{1, \ldots, |w|\}^k$

again, if we're lucky, this structure is isomorphic to some $f(w) \in \Sigma^*$

Theorem [Bojańczyk, Kiefer & Lhote 2019]

String-to-string MSO interpretations = polyregular functions

- Highly technical proof using finite model theory
- Somewhat "unnatural": no reason *a priori* for MSO interpretations to preserve regular languages by inverse image whereas MSO transductions (1-dim.) compose by syntactic substitution

Example of MSO interpretation

 $innsq': w_0 \# \dots \# w_n \longmapsto (w_0)^n \dots (w_n)^n$ has a dim. 2 (optimal) interpretation:

acab#abba#c

Example of MSO interpretation

 $innsq': w_0 \# \dots \# w_n \longmapsto (w_0)^n \dots (w_n)^n$ has a dim. 2 (optimal) interpretation:

acab#abba#c

- $\varphi_a(x_1, x_2) = a(x_1) \wedge \#(x_2)$
- $\varphi_{\prec}(x_1, x_2, y_1, y_2) = \exists x_3, y_3$. which begin blocks containing resp. x_1, y_1 and $(x_3, x_2, x_1) < (y_3, y_2, y_1)$ lex. \longrightarrow pebbles $\downarrow, \Downarrow, \bigtriangledown$

Dimension minimisation

Theorem [Bojańczyk 2023]

MSO interpretations of dim. k on strings = polyregular fn with growth $O(n^k)$

Theorem [Bojańczyk 2023]

MSO interpretations of dim. k on strings = polyregular fn with growth $O(n^k)$

Fundamentally, it's not about interpretations, it's about queries:

Main lemma

Let $\varphi(x_1, \ldots, x_\ell)$ be an MSO formula over Γ^* . One can compute:

- the least $k \in \mathbb{N}$ such that $|\{(i_1, \ldots, i_\ell) \mid w \models \varphi(i_1, \ldots, i_\ell)\}| = O(|w|^k)$ (so $k \le \ell$);
- $\psi(x_1, \ldots, x_\ell, z_1, \ldots, z_k)$ and $B \in \mathbb{N}$ such that for every $w \in \Gamma^*$,
 - $\forall j_1,\ldots,j_k, |\{(i_1,\ldots,i_\ell) \mid w \models \psi(i_1,\ldots,i_\ell,j_1,\ldots,j_k)\}| \leq B;$
 - $\forall i_1, \ldots, i_\ell, w \models \varphi(i_1, \ldots, i_\ell) \implies |\{(j_1, \ldots, j_k) \mid w \models \psi(i_1, \ldots, i_\ell, j_1, \ldots, j_k)\}| = 1.$

Suffices to derive the theorem by simple syntactic "reparametrization"

MSO query reparametrization made easy

- Bojańczyk proves (something more precise than) the Main Lemma via compositionality of MSO + factorisation forests
- This is overkill: the Main Lemma reduces to a structure theorem on *polynomially ambiguous automata*, obtained by "simple-minded" pumping origin: [Seidl & Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot & Gastin 2020]

MSO query reparametrization made easy

- Bojańczyk proves (something more precise than) the Main Lemma via compositionality of MSO + factorisation forests
- This is overkill: the Main Lemma reduces to a structure theorem on *polynomially ambiguous automata*, obtained by "simple-minded" pumping origin: [Seidl & Weber 1991]; convenient variant: [Douéneau-Tabot, Filiot & Gastin 2020]

Connection between MSO queries and ambiguous automata

 $\varphi(x_1, \dots, x_\ell) \rightsquigarrow \text{DFA recognizing words with } \ell \text{ marked positions}$ $\xrightarrow[\text{projection } (\Gamma \times \{0,1\}^\ell)^* \to \Gamma^*]} \text{NFA recognizing words without marks}$

Ambiguity (nb of runs) of NFA on $w \in \Gamma^* =$ nb of "w+marks" accepted by DFA = nb of query matches on w

MSO set queries and set interpretations

Connection between MSO <u>set</u> queries and ambiguous automata

 $\begin{array}{ll} \varphi(\underbrace{X_1,\ldots,X_\ell}) \rightsquigarrow \text{DFA recognizing words with } \{0,1\}^\ell \text{-coloring} \\ \text{variables ranging over subsets of positions} & \longrightarrow \text{NFA recognizing words without colors} \end{array}$

Ambiguity of NFA on $w \in \Gamma^* = nb$ of "w+colors" accepted by DFAnow possibly exponential= nb of query matches on w

MSO set queries and set interpretations

Connection between MSO set queries and ambiguous automata $\varphi(X_1, \ldots, X_\ell) \rightarrow$ DFA recognizing words with $\{0, 1\}^\ell$ -coloringvariables ranging over subsets of positions \longrightarrow NFA recognizing words without colorsAmbiguity of NFA on $w \in \Gamma^* = nb$ of "w+colors" accepted by DFAnow possibly exponential= nb of query matches on w

Structure thm of poly. amb. NFA \implies can determine whether nb of matches of φ is $O(n^k)$, and if so, compute reparametrization $\psi(X_1, \ldots, X_\ell, z_1, \ldots, z_k)$

Corollary: generalization of Bojańczyk's dimension minimization theorem

MSO set interpretation of growth $O(n^k) \equiv$ MSO interpretation of dim. *k*

<u>**def:**</u> specified by $\varphi_a(X_1, \ldots, X_\ell) + \varphi_{\prec}(X_1, \ldots, X_\ell, Y_1, \ldots, Y_\ell)$ [Colcombet & Löding 2007]

Generalization to trees

Simple pumping (pigeonhole principle) instead of factorization forests
 → can hope for extension from strings to *ranked trees*

Generalization to trees

- Simple pumping (pigeonhole principle) instead of factorization forests
 → can hope for extension from strings to *ranked trees*
- Reuse ideas from Erik Paul's master thesis (Univ. Leipzig, 2015)
 - $\longrightarrow proof$ "from scratch" of "main lemma" in a few pages
 - \rightarrow dimension minimization for *tree-to-anything* MSO set interpretations follows by same syntactic argument as before

Generalization to trees

- Simple pumping (pigeonhole principle) instead of factorization forests
 → can hope for extension from strings to *ranked trees*
- Reuse ideas from Erik Paul's master thesis (Univ. Leipzig, 2015)
 - $\longrightarrow proof$ "from scratch" of "main lemma" in a few pages
 - \rightarrow dimension minimization for *tree-to-anything* MSO set interpretations follows by same syntactic argument as before
- No fully black-box reduction to known literature... but this "main lemma" on MSO set queries on trees entails a new(??) result:

Corollary

Given a tree automaton as input, the least $k \in \mathbb{N}$ such that it is $O(n^k)$ -ambiguous is computable. (also poly/exp ambiguity dichotomy: was explicitly stated by E. Paul)

Important examples of MSO set interpretation over trees (1)

Proposition

If $f: \operatorname{Tree}(\Gamma) \to \operatorname{Tree}(\Sigma)$ is defined by an *MSO transduction with sharing*, then it is also defined by some MSO set interpretation.

 $\text{i.e.} f = (\text{Tree}(\Gamma) \xrightarrow[\text{i.e. 1-dim. MSO interpretation}]{\text{some MSO transduction}} \text{rootedDAG}(\Sigma) \xrightarrow[\text{unfold}]{\text{unfold}} \text{Tree}(\Sigma))$

Important examples of MSO set interpretation over trees (1)

Proposition

If $f: \operatorname{Tree}(\Gamma) \to \operatorname{Tree}(\Sigma)$ is defined by an *MSO transduction with sharing*, then it is also defined by some MSO set interpretation.

i.e. $f = (\text{Tree}(\Gamma) \xrightarrow{\text{some MSO transduction}} \text{rootedDAG}(\Sigma) \xrightarrow{\text{unfold}} \text{Tree}(\Sigma))$ i.e. 1-dim. MSO interpretation

 $|f(t)| = \Theta(|t|^2)$ here; \exists example of growth $\Theta(2^n)$ (complete binary tree)

Important examples of MSO set interpretation over trees (2)

Proposition

If *f* is defined by an *MSO transduction with sharing* i.e. $unfold \circ [MSO trans.]$ (or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround) then it is also defined by some MSO set interpretation.

• *unfold* is defined by a DAG-to-tree MSO set interpretation

(idea: output nodes = input paths from the root)

 on arbitrary structures: [MSO set interp.] ○ [MSO trans.] ⊆ [MSO set interp.] (by the usual syntactic substitution argument)

Important examples of MSO set interpretation over trees (2)

Proposition

If *f* is defined by an *MSO transduction with sharing* i.e. $unfold \circ [MSO trans.]$ (or equivalently: by an attribute grammar / a tree-walking transducer with regular lookaround) then it is also defined by some MSO set interpretation.

• *unfold* is defined by a DAG-to-tree MSO set interpretation

(idea: output nodes = input paths from the root)

- on arbitrary structures: [MSO set interp.] [MSO trans.] ⊆ [MSO set interp.]
 (by the usual syntactic substitution argument)
- ⇒ **The growth rate theorem applies!** new result on MSO trans. w/ sharing e.g. the example on previous slide admits a 2-dim. interpretation

The linear growth case

In particular...

If f: Tree(Γ) \rightarrow Tree(Σ) is defined by an MSO transduction w/ sharing (MSOTS) and |f(t)| = O(|t|), then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet & Maneth 2003] is very technical, has weaker assumption "*f* computed by some macro tree transducer"

known: MSOTS \subseteq macro tree transducer \subseteq MSOTS \circ MSOTS

The linear growth case

In particular...

If f: Tree(Γ) \rightarrow Tree(Σ) is defined by an MSO transduction w/ sharing (MSOTS) and |f(t)| = O(|t|), then it is also defined by an MSO transduction (MSOT).

Existing result, but the only known proof [Engelfriet & Maneth 2003] is very technical, has weaker assumption "*f* computed by some macro tree transducer"

known: MSOTS \subseteq macro tree transducer \subseteq MSOTS \circ MSOTS

Proposition

 $MSOTS \circ MSOTS \subseteq unfold \circ [(tree-to-DAG) MSO set interpretation]$

 $MSOT \circ \textit{unfold} \circ MSOT \equiv FOT \circ MSO \ relabeling \circ \textit{unfold} \circ MSOT$

 $(FOT = first-order transductions) \subseteq FOT \circ (unfold \circ MSOT) \circ MSOT$

unfold vs relabeling "commutation lemma": ∃ something similar in Carayol's PhD

macro tree transducer \subseteq *unfold* \circ [(tree-to-DAG) MSO set interpretation]

<u>Theorem</u> – generalizing [Engelfriet & Maneth 2003] thanks to the above

If $f = unfold \circ [some MSO set interpretation] and <math>|f(t)| = O(|t|)$,

then f is defined by some MSO transduction.

macro tree transducer \subseteq *unfold* \circ [(tree-to-DAG) MSO set interpretation]

<u>Theorem</u> – generalizing [Engelfriet & Maneth 2003] thanks to the above If $f = unfold \circ [\text{some MSO set interpretation}]$ and |f(t)| = O(|t|), then f is defined by some MSO transduction.

Since $|unfold(G)| \ge |G|$, the MSO set interpretation in the statement is O(n) \Rightarrow by growth rate theorem on set interpretation, it's equivalent to an MSOT $\Rightarrow f = unfold \circ [\text{some MSOT}] \text{ and } |f(t)| = O(|t|)$ \rightsquigarrow conclude using theorem on MSOT w/ sharing = unfold \circ MSOT! \Box

macro tree transducer \subseteq *unfold* \circ [(tree-to-DAG) MSO set interpretation]

<u>Theorem</u> – generalizing [Engelfriet & Maneth 2003] thanks to the above If $f = unfold \circ [\text{some MSO set interpretation}] \text{ and } |f(t)| = O(|t|),$

then *f* is defined by some MSO transduction.

Since $|unfold(G)| \ge |G|$, the MSO set interpretation in the statement is O(n) \Rightarrow by growth rate theorem on set interpretation, it's equivalent to an MSOT $\Rightarrow f = unfold \circ [\text{some MSOT}] \text{ and } |f(t)| = O(|t|)$ \rightsquigarrow conclude using theorem on MSOT w/ sharing = unfold \circ MSOT! \Box

Future work

Reprove the generalization of [Engelfriet, Inaba & Maneth 2021] to entire composition hierarchy of MSOT w/ sharing, using similarly "clean" arguments

macro tree transducer \subseteq unfold \circ [(tree-to-DAG) MSO set interpretation]

<u>Theorem</u> – generalizing [Engelfriet & Maneth 2003] thanks to the above

If $f = unfold \circ [some MSO set interpretation]$ and |f(t)| = O(|t|), then f is defined by some MSO transduction.

Since $|unfold(G)| \ge |G|$, the MSO set interpretation in the statement is O(n) \Rightarrow by growth rate theorem on set interpretation, it's equivalent to an MSOT $\Rightarrow f = unfold \circ [\text{some MSOT}] \text{ and } |f(t)| = O(|t|)$ \rightsquigarrow conclude using theorem on MSOT w/ sharing = unfold \circ MSOT! \Box

Future work

Reprove the generalization of [Engelfriet, Inaba & Maneth 2021] to entire composition hierarchy of MSOT w/ sharing, using similarly "clean" arguments