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There is a remarkable divide in the field of logic in Computer Science, between two
distinct strands: one focusing on semantics and compositionality (“Structure”),
the other on expressiveness and complexity (“Power”). It is remarkable because
these two fundamental aspects of our field are studied using almost disjoint tech-
nical languages and methods, by almost disjoint research communities.

— S. Abramsky (from the blurb of the Structure meets Power workshops)

• OASIS seminar: mostly about “structure”
• This talk: connections with automata, from the “power” side

• Are they really though? I’ll come back to that during the talk
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Some motivations coming from the λ-calculus

Let’s consider the simply typed λ-calculus (I assume basic familiarity).

It’s a programming language, so it computes! And it’s not Turing-complete

−→ typical “power” question: what does it compute? Some results known, e.g.

Theorem (Schwichtenberg 1975)
The functions Nk → N definable by simply-typed λ-terms t : Nat → · · · → Nat → Nat
are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

where Nat is the type of Church numerals: Nat = (o → o) → o → o

n ∈ N ⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f

All inhabitants of Nat are equal to some n up to =βη
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Simply typed functions on Church numerals

Church numerals: Nat = (o → o) → o → o

Nat[A/o] = (A → A) → A → A

Schwichtenberg 1975: Nat → · · · → Nat → Nat = extended polynomials

Let’s add a bit of (meta-level) polymorphism: n : Nat[A] = Nat[A/o] for n ∈ N

More difficult question (what is the right perspective on it?)
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?

• Looks weird: you can express towers of exponentials, but not subtraction or
equality (Statman 198X) – is it a good question?

• Not so important: this is about “power” while our focus is on “structure”

Little-known(?) fact: the case N → {0, 1} / Nat[A] → Bool has a very satisfying
characterization, that even generalizes to strings!
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Defining languages in the simply typed λ-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011 −→β 011 id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.
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Regular languages

Many classical equivalent definitions (+ STλC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA): e.g. drawing below

• algebraic definition below (very close to DFA), e.g. M = Z/(2)

even odd

0
1

0

1
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Regular languages

Many classical equivalent definitions (+ STλC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA)
• algebraic definition below (very close to DFA), e.g. M = Z/(2)

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a
finite monoid M and a subset P ⊆ M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Σ: finite alphabet, Σ∗: words over Σ
monoid structure: for v,w ∈ Σ∗, v · w = concatenation
morphism: for w ∈ Σ∗ with n letters, φ(w) = φ(w[0]) . . . φ(w[n])
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Proof of STλC-definable =⇒ regular (the converse is easy)

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any simply typed λ-term t : StrΣ[A] → Bool,
the language L(t) = {w ∈ Σ∗ | t w →∗

β true} is regular.

Part 1 of proof.
Fix type A. Any denotational semantics J−K quotients words:

w ∈ Σ∗ ⇝ w : Str[A]⇝ JwKStrΣ[A] ∈ JStrΣ[A]K
JwKStrΣ[A] determines behavior of w w.r.t. all StrΣ[A] → Bool terms:

w ∈ L(t) ⇐⇒ t w →∗
β true ⇐⇒︸ ︷︷ ︸
assuming JtrueK̸=JfalseKJt wK = JtK(JwK) = JtrueK

Goal: to decide L(t), compute w 7→ JwK in some denotational model.
7/23
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Regular languages in STλC and implicit complexity

Template for theorems at the structure/power interface
The languages/functions computed by programs of type T in the programming
language P are exactly those in the class C.

• Hillebrand & Kanellakis: P = simply typed λ-calculus, C = regular languages
• Good news: unlike “extended polynomials”, a central object in

another field of computer science, namely automata theory

• Implicit computational complexity: C is a complexity class e.g. P, NP, …
• ICC has been an active research field since the 1990s (cf. Péchoux’s HDR)
• Historical example (Girard): P = Light Linear Logic, C = P (polynomial time)

Our “implicit automata” research programme: C coming from automata theory
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Grandeur et misère de la complexité implicite

Implicit complexity has been very successful in capturing lots of different
complexity classes!

But the programming languages involved are often ad-hoc…
Several systems […] have been produced; my favourite being LLL, light linear
logic, which […] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules
which achieve certain effects, but are not justified by use, not even by some natural
“semantic” considerations. — J.-Y. Girard, From Foundations to Ludics

Yet we didn’t ask for regular languages to appear in the simply typed λ-calculus!

“Implicit automata” challenge: find natural characterizations for other
automata-theoretic classes of languages/functions using typed λ-calculi

Our new target: the class of star-free languages (we’ll come back to N → N later)
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Star-free languages and aperiodicity

Star-free languages: regular expressions with complementation but without star

L, L′ ::= ∅ | {a} | L · L′ | L ∪ L′ | Lc

e.g. (ab)∗ = (b∅c ∪∅ca ∪∅caa∅c ∪∅cbb∅c)c

but (aa)∗ is not star-free…

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a
finite monoid M and a subset P ⊆ M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Theorem (Schützenberger 1965)
L ⊆ Σ∗ is star-free ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a finite and
aperiodic monoid M and a subset P ⊆ M such that L = φ−1(P).
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e.g. (ab)∗ = (b∅c ∪∅ca ∪∅caa∅c ∪∅cbb∅c)c but (aa)∗ is not star-free…

Definition
A (finite) monoid M is aperiodic when ∀x ∈ M, ∃n ∈ N : xn = xn+1.

Morally, (aa)∗ involves the group Z/(2): not aperiodic

Theorem (Schützenberger 1965)
L ⊆ Σ∗ is star-free ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a finite and
aperiodic monoid M and a subset P ⊆ M such that L = φ−1(P).
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From aperiodicity to non-commutativity

How to enforce aperiodicity in a λ-calculus? Consider monoids of terms t : A → A
Embedding of non-aperiodic Z/(2) via not : Bool → Bool (not ◦ not =β id)

true = λx. λy. x false = λx. λy. y not = λb. λx. λy. b y x

morally, if b then x else y ⇝ if not(b) then y else x
the not function exchanges two of its arguments

Idea: non-commutative type system, i.e. make the order of arguments matter
“a function λb. λx. λy. (. . .) should first use b, then x, then y”

Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)
oops, now there’s a y occuring before an x…
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Non-commutative types and linear logic

Idea: non-commutative type system, i.e. make the order of arguments matter
Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)

the problem comes from the two copies of (x y), caused by two occurrences of z

Fix: prohibit duplication −→ non-commutative affine λ-calculus
“a function should use its argument at most once”

If “exactly once”, non-commutative linear λ-calculus; an old idea:

• first introduced by Lambek (1958), applied to linguistics
• revival in late 1980s with the birth of linear logic (Girard)
• recently: correspondence with planar combinatorial maps (N. Zeilberger)

−→ not contrived to get a connection with automata!

12/23



Non-commutative types and linear logic

Idea: non-commutative type system, i.e. make the order of arguments matter
Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)

the problem comes from the two copies of (x y), caused by two occurrences of z
Fix: prohibit duplication −→ non-commutative affine λ-calculus
“a function should use its argument at most once”

If “exactly once”, non-commutative linear λ-calculus; an old idea:

• first introduced by Lambek (1958), applied to linguistics
• revival in late 1980s with the birth of linear logic (Girard)
• recently: correspondence with planar combinatorial maps (N. Zeilberger)

−→ not contrived to get a connection with automata!

12/23



Non-commutative types and linear logic

Idea: non-commutative type system, i.e. make the order of arguments matter
Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)

the problem comes from the two copies of (x y), caused by two occurrences of z
Fix: prohibit duplication −→ non-commutative affine λ-calculus
“a function should use its argument at most once”

If “exactly once”, non-commutative linear λ-calculus; an old idea:

• first introduced by Lambek (1958), applied to linguistics
• revival in late 1980s with the birth of linear logic (Girard)
• recently: correspondence with planar combinatorial maps (N. Zeilberger)

−→ not contrived to get a connection with automata!

12/23



Non-commutative types and linear logic

Idea: non-commutative type system, i.e. make the order of arguments matter
Technical issue: λf. λx. λy. (λz. f z z) (x y) −→β λf. λx. λy. f (x y) (x y)

the problem comes from the two copies of (x y), caused by two occurrences of z
Fix: prohibit duplication −→ non-commutative affine λ-calculus
“a function should use its argument at most once”

If “exactly once”, non-commutative linear λ-calculus; an old idea:

• first introduced by Lambek (1958), applied to linguistics
• revival in late 1980s with the birth of linear logic (Girard)
• recently: correspondence with planar combinatorial maps (N. Zeilberger)

−→ not contrived to get a connection with automata!

12/23



Finally, our theorem: a computational consequence of non-commutative typing

Our type system: a base type o + two function arrows that coexist
non-commutative affine: λ◦x. t : A⊸ B unrestricted: λ�x. t : A → B

A function λ◦x. λ�y. λ◦z. (. . .) can use each of x and z at most once
cannot use x after z no restrictions on y

Church encoding with affine types
011 = λ�f0. λ�f1. λ◦x. f0 (f1 (f1 x)) : Str{0,1} = (o⊸ o) → (o⊸ o) → (o⊸ o)

Theorem (N. & Pradic 2020 + linear instead of affine variant in my PhD)
This typed λ-calculus can define all star-free languages, and only those, with terms of
type Str{0,1}[A]⊸ Bool where A is purely affine i.e. does not contain any ‘→’.

(A may vary depending on the language, as in Hillebrand & Kanellakis.)

With commutative affine types, you’d get regular languages.
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A non-commutative affine type system

Typing judgments Γ | ∆ ` t : A for a set Γ and an ordered list ∆

Γ ] {x : A} | ∅ ` x : A Γ | x : A ` x : A
Γ | ∆ ` t : A → B Γ | ∅ ` u : A

Γ | ∆ ` t u : B

Γ ] {x : A} | ∆ ` t : B
Γ | ∆ ` λ�x. t : A → B

Γ | ∆ ` t : A⊸ B Γ | ∆′ ` u : A
Γ | ∆ ·∆′ ` t u : B

Γ | ∆ · (x : A) ` t : B
Γ | ∆ ` λ◦x. t : A⊸ B

Γ | ∆ ` t : A
Γ | ∆′ ` t : A

when ∆ is a subsequence of ∆′

without weakening (last rule)≈ Polakow & Pfenning’s Intuitionistic Non-Commutative Linear Logic
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Remarks on the proof

To prove “non-commutatively λ-definable” ⊆ star-free, we use:
Lemma (in our non-commutative λ-calculus)
For any purely affine A, the monoid {t | t : A⊸ A}/=βη is finite and aperiodic.

Finite due to affineness, aperiodic due to non-commutativity.

The converse is harder (unusual for implicit complexity!): how do we exploit the
aperiodicity assumption? Using the powerful toolbox of finite semigroup theory
Theorem (special case of [Krohn & Rhodes 1965])
Any finite and aperiodic monoid can be “decomposed” as a wreath product of
“building blocks” which are certain monoids with 3 elements.

To avoid the scary algebra: a detour through transducers, i.e. automata with output.
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Structure in the service of Power: applying a factorization theorem

The Krohn–Rhodes decomposition rephrased
The class of aperiodic sequential functions is generated from very simple
string-to-string transducers (with 2 states) by usual function composition.

L ⊆ Σ∗ is star-free ⇐⇒ L = f−1(ε) for some aperiodic sequential f : Σ∗ → Γ∗

Theorem
Our non-commutative affine λ-calculus can define at least all aperiodic sequential
functions with terms of type StrΓ[A]⊸ StrΣ (A purely affine).

Proof: it’s enough to find λ-terms for the “building block” transducers
(not-so-trivial programming exercise!)

Corollary
It can define all star-free languages with terms of type StrΣ[A]⊸ Bool.
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String-to-string functions

Theorem
Our non-commutative λ-calculus can define at least all aperiodic sequential functions
with terms t : StrΓ[A]⊸ StrΣ (A purely affine).

Obtained as byproduct of our proof. What about the converse?

False: we can code non-sequential functions, e.g. reverse : StrΣ[o⊸ o]⊸ StrΣ
(sequential functions are “left-to-right”)

• Exact characterization of StrΓ[A]⊸ StrΣ (A purely affine)?
• What happens in a commutative affine λ-calculus?

At least all (not necessarily aperiodic) sequential functions; actually more

Similar to questions at the beginning about simply typed λ-calculus
(in the case N → N) but affineness makes things easier.
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Characterizing regular functions

Theorem
f : Γ∗ → Σ∗ can be expressed by an affine λ-term t : StrΓ[A]⊸ StrΣ (A purely affine)
⇐⇒ f is a regular function (commutative case) / aperiodic reg. fn. (non-comm. case)

e.g. map-copy-reverse(aab#abc# . . . ) = aab#baa#abc#cba# . . .

Regular functions admit many equivalent definitions; among others:

• two-way finite state transducers (sequential functions = one-way)
• monadic second-order logic (reg. fn. also called “MSO transductions”)
• basic functions + combinators (several variants)
• copyless streaming string transducers

' affine types!
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Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ε Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

# 7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition
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Proof technique for affinely λ-definable =⇒ regular function

As in [Hillebrand & Kanellakis 1996] for STλC, we use semantic evaluation
C = “Dialectica-like” variant of the category of copyless register updates

• C is (affine) monoidal closed: provides a semantics for purely affine λ-terms
• and automata over C︸ ︷︷ ︸

in the sense of [Colcombet & Petrişan 2017]

compute exactly the regular functions

This reflects compositional structure that is actually used in “mainstream”
automata theory, under the guise of “monoids of behaviors”!
Looking back at this a few years later…
Perhaps the main use of monoidal closure is to form the internal monoids X⊸ X
⇝ inspired a very concise monoid-based categorical definition of

regular functions [Bojańczyk & N., ICALP 2023]
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A big technical digression

Automata over the category Int(PFinSet) = two-way transducers [Hines 2003]
⇝ related to the “geometry of interaction” semantics of linear logic; drawbacks:

• not affine

: superficial issue, just use the Interaction Abstract Machine instead
(ongoing work with Gabriele Vanoni)

• no additive connectives &/⊕

: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization
of regular functions to trees (but they are incompatible with the aperiodic case)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

21/23



A big technical digression

Automata over the category Int(PFinSet) = two-way transducers [Hines 2003]
⇝ related to the “geometry of interaction” semantics of linear logic; drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
(ongoing work with Gabriele Vanoni)

• no additive connectives &/⊕

: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization
of regular functions to trees (but they are incompatible with the aperiodic case)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

21/23



A big technical digression

Automata over the category Int(PFinSet) = two-way transducers [Hines 2003]
⇝ related to the “geometry of interaction” semantics of linear logic; drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
(ongoing work with Gabriele Vanoni)

• no additive connectives &/⊕: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization
of regular functions to trees (but they are incompatible with the aperiodic case)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

21/23



A big technical digression

Automata over the category Int(PFinSet) = two-way transducers [Hines 2003]
⇝ related to the “geometry of interaction” semantics of linear logic; drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
(ongoing work with Gabriele Vanoni)

• no additive connectives &/⊕: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization
of regular functions to trees (but they are incompatible with the aperiodic case)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

21/23



A big technical digression

Automata over the category Int(PFinSet) = two-way transducers [Hines 2003]
⇝ related to the “geometry of interaction” semantics of linear logic; drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
(ongoing work with Gabriele Vanoni)

• no additive connectives &/⊕: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization
of regular functions to trees (but they are incompatible with the aperiodic case)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

21/23



Some further developments inspired by “implicit automata”

New automaton/transducer models and/or answers to open problems:

• Comparison-free polyregular functions [N., Noûs, Pradic ICALP’21]:
discovered by playing around with Str[A] → Str instead of Str[A]⊸ Str
natural from an automata-theoretic POV, part of a recent line of investigations
into polynomial growth transductions (Bojańczyk, Douéneau, Kiefer, Lhote, …)

• “Collapsible pushdown transducers”: answers our running question on STλC
Lessons from 1980s literature on (higher-order) tree transducers
+ 2010s work on higher-order recursion schemes (+ Plotkin 1982/2022)

• planar two-way automata (Hines) = star-free languages
• (Baillot’s characterization of P in Elementary Affine Logic) \ (recursive types)

= regular languages my first use of these ideas, [post-proceedings DICE-FOPARA’19]
• β-convertibility for the safe λ-calculus is TOWER-complete (new!)
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Conclusion

Thanks for your attention! Questions?

We study the expressive power of typed λ-calculi
−→ connections with automata theory naturally emerge

Characterization of classes of languages using Church encodings

• Regular languages in simply typed λ-calculus [Hillebrand & Kanellakis 1996]

• Star-free languages in non-commutative affine λ-calculus [N. & Pradic 2020]

Many further results on string-to-string (or even tree-to-tree) functions:
correspond to transducers (automata with output)

Convergence with another tradition coming from automata theory:
higher-order (grammars | tree transducers), recursion schemes, …

Also a source of inspiration for both λ-calculi and automata
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