Algebraic Recognition of Regular Functions

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito. eu - ÉNS Lyon joint work with Mikołaj Bojańczyk (MIMUW, University of Warsaw)

Séminaire Move, LIS, Université Aix-Marseille - 22 juin 2023

Reminder: automata and regular languages

Languages $=$ sets of words $L \subseteq \Sigma^{*} \cong$ decision problems $\Sigma^{*} \rightarrow\{$ yes, no $\}$
$\underline{\text { Regular languages: fundamental class in comp. sci., many definitions }}$

- regular expressions: $0 *(10 * 10 *) *=$ "only 0 s and $1 \mathrm{~s} \&$ even number of 1 s "
- finite automata (deterministic or not): e.g. drawing below

Reminder: automata and regular languages

Languages $=$ sets of words $L \subseteq \Sigma^{*} \cong$ decision problems $\Sigma^{*} \rightarrow\{$ yes, no $\}$
Regular languages: fundamental class in comp. sci., many definitions

- regular expressions: $0 *(10 * 10 *) *=$ "only 0 s and $1 \mathrm{~s} \&$ even number of 1 s "
- finite automata (deterministic or not)
- algebraic definition below (very close to automata), e.g. $M=\mathbb{Z} /(2)$

Theorem (classical)

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow there are a monoid morphism $\varphi: \Sigma^{*} \rightarrow M$ to a finite monoid M and a subset $P \subseteq M$ such that $L=\varphi^{-1}(P)=\left\{w \in \Sigma^{*} \mid \varphi(w) \in P\right\}$.
$\Sigma^{*}=\{$ words over the finite alphabet $\Sigma\}=$ free monoid

- monadic 2nd-order logic, simply typed λ-calculus [Hillebrand \& Kanellakis 1996], ...

Algebraic recognition of regular languages

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as $\Sigma^{*} \xrightarrow{\text { some morphism }}$ some finite monoid $M \rightarrow\{$ yes, no $\}$
\rightsquigarrow terminology: " M recognizes L "

Algebraic recognition of regular languages

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\begin{gathered}
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite monoid } M \rightarrow\{\text { yes, no }\} \\
\rightsquigarrow \text { terminology: " } M \text { recognizes } L \text { " }
\end{gathered}
$$

Varying the monoids M allowed leads to algebraic language theory

Founding example: Schützenberger's theorem on star-free languages

L is recognized by some aperiodic finite monoid ($\forall x \in M, \exists n \in \mathbb{N}: x^{n}=x^{n+1}$)
\Longleftrightarrow it is described by some star-free expression

Semigroups instead of monoids

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as $\Sigma^{*} \xrightarrow{\text { some morphism }}$ some finite semigroup $S \rightarrow\{$ yes, no $\}$

Definition

Semigroup $=$ set + associative binary operation (so monoid $=$ semigroup + unit $)$

Semigroups instead of monoids

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as $\Sigma^{*} \xrightarrow{\text { some morphism }}$ some finite semigroup $S \rightarrow\{$ yes, no $\}$

Definition

Semigroup $=$ set + associative binary operation (so monoid $=$ semigroup + unit $)$
We still have: star-free language \Longleftrightarrow recognized by aperiodic finite semigroup

Semigroups are sometimes more convenient than monoids

A finite semigroup is aperiodic ($\forall x \in S, \exists n \geq 1: x^{n}=x^{n+1}$)
\Leftrightarrow none of its non-trivial subsemigroups are groups $\quad((\Leftarrow)$ fails with submonoids $)$
Remark: every finite semigroup "is built from" groups \& aperiodic semigroups divides a wreath product of (Krohn-Rhodes decomposition)

From languages to functions

Finite semigroups recognize regular languages $L \subseteq \Sigma^{*} \rightsquigarrow$ leads to a rich theory
What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$?

From languages to functions

Finite semigroups recognize regular languages $L \subseteq \Sigma^{*} \rightsquigarrow$ leads to a rich theory

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$?

Many non-equivalent transducer models: finite-state devices with outputs
(sequential functions, rational functions, polyregular functions...) common property ("sanity check"): L regular $\Longrightarrow f^{-1}(L)$ regular

From languages to functions

Finite semigroups recognize regular languages $L \subseteq \Sigma^{*} \rightsquigarrow$ leads to a rich theory

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$?

Many non-equivalent transducer models: finite-state devices with outputs
(sequential functions, rational functions, polyregular functions...) common property ("sanity check"): L regular $\Longrightarrow f^{-1}(L)$ regular

Regular functions are one of the most robust/canonical classes

- several equivalent definitions (next slides)
- previously, no concise algebraic one \longrightarrow our contribution using a bit of category theory!

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output:

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output:

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: a

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b$

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b c$

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b c$

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abcc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#b

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#ba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bac

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bac

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bacc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bacca

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#c

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cbbc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
\text { mapReverse : }\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned} \begin{aligned}
& \mapsto \text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
\end{aligned}
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=\varepsilon \quad Y=\varepsilon
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=a \quad Y=\varepsilon
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=c a \quad Y=\varepsilon
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{gathered}
\text { mapReverse : } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
w_{1} \# \ldots \# w_{n} & \mapsto \text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
\downarrow &
\end{aligned}
\end{gathered}
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c a \quad Y=\varepsilon
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=\text { baca } \quad Y=\varepsilon
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=\varepsilon \quad Y=b a c a \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=b \quad Y=b a c a \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=c b \quad Y=b a c a \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{gathered}
\text { mapReverse: } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow \\
& \rightarrow a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned} \text { け reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\\
a & c & a & b & \# & b & c & \# & c & a \\
\hline
\end{array} \\
X=\varepsilon \quad Y=b a c a \# c b \#
\end{gathered}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=c \quad Y=b a c a \# c b \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=a c \quad Y=b a c a \# c b \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
\text { mapReverse : }\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned} \begin{aligned}
& \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
\end{aligned}
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c \quad Y=b a c a \# c b \# \quad \text { mapReverse }(\ldots)=Y X=b a c a \# c b \# a c
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\text { mapReverse : } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned}>\text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c \quad Y=b a c a \# c b \# \quad \text { mapReverse }(\ldots)=Y X=b a c a \# c b \# a c
$$

Regular functions $=$ computed by copyless SSTs
$a \mapsto\left\{\begin{array}{ll}X:=a X \\ Y:=Y\end{array} \quad \# \mapsto \begin{cases}X:=\varepsilon & \text { each register appears } \text { at most once } \\ Y:=Y X \# & \text { on the right of } \mathrm{a}:=\text { in a transition }\end{cases}\right.$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\text { mapReverse : } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned}>\text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c \quad Y=b a c a \# c b \# \quad \text { mapReverse }(\ldots)=Y X=b a c a \# c b \# a c
$$

Regular functions $=$ computed by copyless SSTs
$a \mapsto\left\{\begin{array}{ll}X:=a X \\ Y:=Y\end{array} \quad \# \mapsto \begin{cases}X:=\varepsilon & \text { each register appears } \text { at most once } \\ Y:=Y X \# & \text { on the right of } \mathrm{a}:=\text { in a transition }\end{cases}\right.$
\rightsquigarrow connection with linear logic [Gallot, Lemay \& Salvati 2020; N. \& Pradic (in my PhD)]

Recognizing regular functions

A language is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite semigroup } \rightarrow\{\text { yes }, \text { no }\}
$$

The main idea

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some "construction on semigroups" F with S finite $\Rightarrow F(S)$ finite
- and some "uniformly defined" out ${ }_{A}: \mathrm{F}(A) \rightarrow A$ (not a morphism)

Variants: concrete (registers, not in ICALP paper), short/abstract (category theory) In both cases, easy to see closure under composition

Finitary register semigroups: example

finite semigroup with \times contents of S-valued registers X, Y
$F(S)$ has underlying set $\overbrace{\{0,1\}} \times \overbrace{S^{\{X, Y\}}}$; example in $F(\mathbb{N},+)$:

$$
\left(1,\binom{X \mapsto 42}{Y \mapsto 218}\right) \cdot\left(0,\binom{X \mapsto 1}{Y \mapsto 100}\right)=\left(1 \times 0,\binom{X \mapsto 42+1}{Y \mapsto 42+100}\right)
$$

Finitary register semigroups: example

```
finite semigroup with \(\times\) contents of \(S\)-valued registers \(X, Y\)
```

$F(S)$ has underlying set $\overbrace{\{0,1\}} \times \overbrace{S^{\{X, Y\}}}$; example in $F(\mathbb{N},+)$:

$$
\left(1,\binom{X \mapsto 42}{Y \mapsto 218}\right) \cdot\left(0,\binom{X \mapsto 1}{Y \mapsto 100}\right)=\left(1 \times 0,\binom{X \mapsto 42+1}{Y \mapsto 42+100}\right)
$$

F defined from: finite "control" semigroup + registers + "associative" μ

$$
\mu_{1,0}(X)=X_{\text {left }} X_{\text {right }} \quad \mu_{1,0}(Y)=X_{\text {left }} Y_{\text {right }} \quad \ldots
$$

Exercise

Using this F, complete μ and find a homomorphism h so that

$$
f:\{a, b, c\}^{*} \xrightarrow{h} \mathrm{~F}\left(\{a, b\}^{*}\right) \xrightarrow{\text { value of register } Y}\{a, b\}^{*}
$$

satisfies $\forall u \in\{a, b, c\}^{*}, \forall v \in\{a, b\}^{*}, f(u c v)=a^{|u|} b v$ and $f(v)=v$.

From streaming string transducers to finitary register semigroups

Decomposition of register updates:

$$
\left\{\begin{array} { l }
{ X : = a b X c Y } \\
{ Y : = b a }
\end{array} \quad \rightsquigarrow \quad \text { shape } \left\{\begin{array}{l}
X:=Z_{1} X_{2} Y \\
Y:=Z_{3}
\end{array}+\quad \text { labels } Z_{1}=a b, \ldots\right.\right.
$$

$$
\text { copyless SST } \Longrightarrow \text { bounded-copy SST } \Longleftrightarrow \text { finitely many possible shapes }
$$

Theorem

Bounded-copy streaming string transducers $=$ regular functions

From streaming string transducers to finitary register semigroups

Decomposition of register updates:

$$
\left\{\begin{array} { l }
{ X : = a b X c Y } \\
{ Y : = b a }
\end{array} \quad \rightsquigarrow \quad \text { shape } \left\{\begin{array}{l}
X:=Z_{1} X_{2} Y \\
Y:=Z_{3}
\end{array}+\quad \text { labels } Z_{1}=a b, \ldots\right.\right.
$$

$$
\text { copyless SST } \Longrightarrow \text { bounded-copy SST } \Longleftrightarrow \text { finitely many possible shapes }
$$

Theorem

Bounded-copy streaming string transducers $=$ regular functions
$\mathrm{F}(S)=$ semigroup of state+register updates with "coefficients" in S
\rightsquigarrow represent as register semigroup whose underlying finite sg uses shapes

From streaming string transducers to finitary register semigroups

Decomposition of register updates:

$$
\left\{\begin{array} { l }
{ X : = a b X c Y } \\
{ Y : = b a }
\end{array} \quad \rightsquigarrow \quad \text { shape } \left\{\begin{array}{l}
X:=Z_{1} X_{2} Y \\
Y:=Z_{3}
\end{array}+\quad \text { labels } Z_{1}=a b, \ldots\right.\right.
$$

$$
\text { copyless SST } \Longrightarrow \text { bounded-copy SST } \Longleftrightarrow \text { finitely many possible shapes }
$$

Theorem

Bounded-copy streaming string transducers $=$ regular functions
$\mathrm{F}(S)=$ semigroup of state+register updates with "coefficients" in S
\rightsquigarrow represent as register semigroup whose underlying finite sg uses shapes
Remark: \exists translation: reversible two-way transd. \longrightarrow "copyless" register sg (via "two-sided Shepherdson construction")

From finitary register semigroups to bounded-copy SST

Register semigroup $\left(S_{\mathrm{F}}, R_{\mathrm{F}}, \mu_{\mathrm{F}}\right)+\operatorname{morphism} h: \Sigma^{*} \rightarrow \mathrm{~F}\left(\Gamma^{*}\right) \rightsquigarrow$ "naive" SST

- set of states S_{F}, registers R_{F} - therefore, configurations $\approx F\left(\Gamma^{*}\right)$
- transition for $c \in \Sigma \approx$ action of $h(c) \quad$ (as in finite monoid \rightarrow DFA translation)
\Longrightarrow after reading an input prefix w, current configuration $\approx h(w)$

From finitary register semigroups to bounded-copy SST

Register semigroup $\left(S_{\mathrm{F}}, R_{\mathrm{F}}, \mu_{\mathrm{F}}\right)+\operatorname{morphism} h: \Sigma^{*} \rightarrow \mathrm{~F}\left(\Gamma^{*}\right) \rightsquigarrow$ "naive" SST

- set of states S_{F}, registers R_{F} - therefore, configurations $\approx \mathrm{F}\left(\Gamma^{*}\right)$
- transition for $c \in \Sigma \approx$ action of $h(c) \quad$ (as in finite monoid \rightarrow DFA translation)
\Longrightarrow after reading an input prefix w, current configuration $\approx h(w)$

Key property

This streaming string transducer is automatically bounded-copy
(because the register update "shape" of $h(w)$ is determined by $S_{\text {F }}$ part).
[propaganda time]

Abstracting further using categories

A category $=$ some objects with arrows between them

+ can take composition $g \circ f$ when source $(g)=\operatorname{target}(f)+$ identity arrows

Examples

$\underbrace{\text { Sets and functions }}_{\text {"the category of sets" }}$ / sets and relations / $\underbrace{\text { semigroups and homomorphisms }}_{\text {"the category of semigroups" }} / \ldots$

Abstracting further using categories

A category $=$ some objects with arrows between them

+ can take composition $g \circ f$ when $\operatorname{source}(g)=\operatorname{target}(f)+$ identity arrows

Examples

Functors = "morphisms between categories"

F maps objects to objects, arrows $f: A \rightarrow B$ to $\mathrm{F}(f): \mathrm{F}(A) \rightarrow \mathrm{F}(B)$, preserves o/id

- semigroup-to-set forgetful functor: A semigroup \mapsto underlying set of A
- set-to-semigroup $A \mapsto A^{*}$
- semigroup-to-semigroup $A \mapsto A^{2}$ or $A \mapsto A^{\text {op }}$ or \ldots
- etc.

Natural transformations

Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. A family of arrows $\eta_{A}: \mathrm{F}(A) \rightarrow \mathrm{G}(A)$ is natural when

$$
\forall f: A \rightarrow B, \eta_{B} \circ \mathrm{~F}(f)=\mathrm{G}(f) \circ \eta_{A}
$$

Typical example: generic functions between data structures

$$
\operatorname{List}(A)=A^{*}, \operatorname{List}(f)\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\left[f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right] \quad \operatorname{Maybe}(A)=\{\operatorname{None}\}+A, \ldots
$$

$$
\eta_{A}: x \in \operatorname{Maybe}(A) \mapsto[x, x] \text { if } x \in A \text { else }[] \in \operatorname{List}(A)
$$

Conclusion

A language is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite (monoid|semigroup) } \rightarrow\{\text { yes, no }\}
$$

The main theorem - category-theoretic version

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some semigroup-to-semigroup functor F with S finite $\Rightarrow F(S)$ finite
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)
(\Rightarrow) doable using finitary register semigroups
Non-trivial proof of (\Leftarrow) morally extracting the "origin semantics" of the function $14 / 15$

Conclusion

A language is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite (monoid|semigroup) } \rightarrow\{\text { yes, no }\}
$$

The main theorem - category-theoretic version

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some semigroup-to-semigroup functor F with S finite $\Rightarrow F(S)$ finite
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)
(\Rightarrow) doable using finitary register semigroups
Non-trivial proof of (\Leftarrow) morally extracting the "origin semantics" of the function $14 / 15$

Proof idea: functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^{*} \rightarrow \Gamma^{*}$

For all $u, v \in \Sigma^{*}$, the parts of the output $f(u v)$ "caused by" the input prefix u consist of a bounded number of factors (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \operatorname{reverse}(w)$, at most 2 factors: $f(\underline{\text { baa }})=\underline{c c c a a b}$
\longrightarrow build a transducer whose registers store these factors after reading u

Proof idea: functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^{*} \rightarrow \Gamma^{*}$

For all $u, v \in \Sigma^{*}$, the parts of the output $f(u v)$ "caused by" the input prefix u consist of a bounded number of factors (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \operatorname{reverse}(w)$, at most 2 factors: $f(\underline{\text { baa }})=\underline{c c c a a b}$
\longrightarrow build a transducer whose registers store these factors after reading u
Formally: for f factored into $\Sigma^{*} \xrightarrow{h} \mathrm{~F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}$, consider $\quad(\oplus=$ coproduct)

$$
\operatorname{out}(\mathrm{F} \underline{\iota}(h(b a)) \cdot \mathrm{F} \iota(h(a)))=\underline{c c} \cdot c a \cdot \underline{a b} \in \underline{\Sigma}^{*} \oplus \Sigma^{*}
$$

Proof idea: functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^{*} \rightarrow \Gamma^{*}$

For all $u, v \in \Sigma^{*}$, the parts of the output $f(u v)$ "caused by" the input prefix u consist of a bounded number of factors (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \operatorname{reverse}(w)$, at most 2 factors: $f(\underline{\text { baa }})=\underline{c c c a a b}$
\longrightarrow build a transducer whose registers store these factors after reading u
Formally: for f factored into $\Sigma^{*} \xrightarrow{h} \mathrm{~F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}$, consider $\quad(\oplus=$ coproduct)

$$
\operatorname{out}\left(\mathrm{F}_{\underline{\iota}}(h(b a)) \cdot \mathrm{F} \iota(h(a))\right)=\underline{c c} \cdot c a \cdot \underline{a b} \in \underline{\Sigma}^{*} \oplus \Sigma^{*}
$$

Its "shape" $\underline{1} \cdot 1 \cdot \underline{1}$ is determined by $(\mathrm{F} \top(h(b a)), \mathrm{F} \top(h(a))) \in(\mathrm{F} 1)^{2} \quad\left(\top: \Sigma^{*} \rightarrow 1\right)$ $+(1$ finite \Longrightarrow F1 finite $) \rightsquigarrow$ finitely many shapes \rightsquigarrow desired bound

