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Reminder: automata and regular languages

Languages = sets of words L C ¥* = decision problems ¥* — {yes,no}

Regular languages: fundamental class in comp. sci., many definitions

o regular expressions: 0x (10x10%)* = “only Os and 1s & even number of 1s”

e finite automata (deterministic or not): e.g. drawing below
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Reminder: automata and regular languages

Languages = sets of words L C ¥* = decision problems ¥* — {yes,no}

Regular languages: fundamental class in comp. sci., many definitions

o regular expressions: 0% (10x10%)* = “only Os and 1s & even number of 1s”
e finite automata (deterministic or not)
e algebraic definition below (very close to automata), e.g. M = Z/(2)

Theorem (classical)

A language L C ¥* is regular <= there are a monoid morphism ¢: ¥* — M toa
finite monoid M and a subset P C M such that L = ¢~ (P) = {w € X* | p(w) € P}.

¥* = {words over the finite alphabet ¥} = free monoid
e monadic 2nd-order logic, simply typed A-calculus [Hillebrand & Kanellakis 1996], ...
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Algebraic recognition of regular languages

A language L C ¥* is regular <= the corresponding decision problem factors as

some morphism

x* some finite monoid M — {yes,no}

~- terminology: “M recognizes L”
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Algebraic recognition of regular languages

A language L C ¥* is regular <= the corresponding decision problem factors as

some morphism

E*

some finite monoid M — {yes,no}

~- terminology: “M recognizes L”

Varying the monoids M allowed leads to algebraic language theory

Founding example: Schiitzenberger’s theorem on star-free languages

L is recognized by some aperiodic finite monoid (Vx € M, In € N : x" = x"*1)
<= it is described by some star-free expression

concatenation

empty string
=
EE:=2| ¢ a |EUE|E-F|-E ~ [EC%*
letter in a finite alphabet ¥ complement
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Semigroups instead of monoids

Alanguage L C ¥* is regular <= the corresponding decision problem factors as

some morphism

E*

some finite semigroup S — {yes,no}

Semigroup = set + associative binary operation (so monoid = semigroup + unit)
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Semigroups instead of monoids

Alanguage L C ¥* is regular <= the corresponding decision problem factors as

some morphism

E*

some finite semigroup S — {yes,no}

Semigroup = set + associative binary operation (so monoid = semigroup + unit)

We still have: star-free language <= recognized by aperiodic finite semigroup

Semigroups are sometimes more convenient than monoids

A finite semigroup is aperiodic (Vx € S, In > 1: x" = x"+1)
& none of its non-trivial subsemigroups are groups  ((«) fails with submonoids)

Remark: every finite semigroup “is built from” groups & aperiodic semigroups
| S ———

divides a wreath productof ~ (Krohn—-Rhodes decomposition) 415



From languages to functions

Finite semigroups recognize regular languages L C ¥* ~~ leads to a rich theory

What about functions f : ¥* — I'*?
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From languages to functions

Finite semigroups recognize regular languages L C ¥* ~~ leads to a rich theory

What about functions f : ¥* — I'*?

Many non-equivalent transducer models: finite-state devices with outputs

(sequential functions, rational functions, polyregular functions...)

common property (“sanity check”): L regular = f~!(L) regular

Regqular functions are one of the most robust/canonical classes

e several equivalent definitions (next slides)

e previously, no concise algebraic one — our contribution

using a bit of category theory!
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

!
(>4
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Output: abccb
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Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)
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Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e x|e

4, <l M (x € {a,b,c})

]
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(x € {a,b,c})

)
(>lalblcl#lblafcl#]c]b]<

Output: abccba#baccab#cbbe
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

AN

| clalb #]blcl#]c]al]
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w1# ... #w, +— reverse(wy)#...#reverse(wy)

!
lclalb|#|blc|#|c]a]

X=c¢ Y = baca+#

AN
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mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

!
laflclalb|#|b|c|#|c]a]
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

]
laflclalb|#|b|c|#|c]a]

X=cb Y = baca+#
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mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

]
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

lalclalb|#]b|c|#][c]|a]
X =uac Y = baca#tcb# mapReverse(...) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

{X =aX {X =c each register appears at most once
a— —

Y =Y Y ;= YX# on the right of a := in a transition
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

lalclalb[#[b|c|[#][c[a]
X=uac Y = baca#tcb# mapReverse(...) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

X :=aX X:=¢ each register appears at most once

ar— —
Y =Y Y ;= YX# on the right of a := in a transition

~ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD) |
7/15



Recognizing regular functions

A language is regular <= the corresponding decision problem factors as

some morphism

Z*

some finite semigroup — {yes,no}

A string-to-string function is regular < it factors as

o some morphism FT* outpx *

e for some “construction on semigroups” F with S finite = F(S) finite

e and some “uniformly defined” out,4: F(A) — A (not a morphism)

Variants: concrete (registers, not in ICALP paper), short/abstract (category theory)
In both cases, easy to see closure under composition 8/15



Finitary register semigroups: example

finite semigroup with x contents of S-valued registers X,Y

—_~—
F(S) has underlying set {0,1} x $X¥}; example in F(N, +):

L (X4 o (X7 INY 2 (1uo ( X 42+1
"\Y 218 "\Y+~—100)/) "\Y — 42+100
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Finitary register semigroups: example

finite semigroup with x contents of S-valued registers X,Y

—_~—
F(S) has underlying set {0,1} x $X¥}; example in F(N, +):

1 X— 42 0 X1 _(1x0 X—42+1
"\Y 218 "\Y~100/)/) "\Y — 42+ 100
F defined from: finite “control” semigroup + registers + “associative” p

Nl,O(X) = XleftXright /11170(Y) = XleftYright

Exercise

Using this F, complete 1 and find a homomorphism / so that

value of register Y
—>

£ {a,b,c}* 25 F({a,b}") {a,b}*

satisfies Vu € {a,b,c}*, Vv € {a,b}*, f(ucv) = a™bv and f(v) = .
9/15



From streaming string transducers to finitary register semigroups

Decomposition of register updates:

X :=abXcY X = Z1X2yY
e ~»  shape i + labels Z; =ab, ...
Y :=ba Y : =73

copyless SST = bounded-copy SST <= finitely many possible shapes

Bounded-copy streaming string transducers = regular functions
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From streaming string transducers to finitary register semigroups

Decomposition of register updates:

X :=abXcY X = Z1XZyY
e ~+  shape B + labelsZ; =ab, ...
Y :=ba Y =275

copyless SST = bounded-copy SST <= finitely many possible shapes

Bounded-copy streaming string transducers = regular functions

F(S) = semigroup of state+register updates with “coefficients” in S
~ represent as register semigroup whose underlying finite sg uses shapes

Remark: 3 translation: reversible two-way transd. — “copyless” register sg
(via “two-sided Shepherdson construction”)
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From finitary register semigroups to bounded-copy SST

Register semigroup (Sf, Rf, ) + morphism h: ¥* — F(I'*) ~» “naive” SST

o set of states S, registers R — therefore, configurations ~ F(I'*)

e transition for ¢ € ¥ ~ action of h(c) (as in finite monoid — DFA translation)
= after reading an input prefix w, current configuration ~ h(w)
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From finitary register semigroups to bounded-copy SST

Register semigroup (Sf, Rf, ) + morphism h: ¥* — F(I'*) ~» “naive” SST

o set of states S, registers R — therefore, configurations ~ F(I'*)

e transition for ¢ € ¥ ~ action of h(c) (as in finite monoid — DFA translation)
= after reading an input prefix w, current configuration ~ h(w)

Key property

This streaming string transducer is automatically bounded-copy
(because the register update “shape” of h(w) is determined by S¢ part).

[propaganda time]
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Abstracting further using categories

A category = some objects with arrows between them
+ can take composition g o f when source(g) = target(f) + identity arrows

Sets and functions / sets and relations / semigroups and homomorphisms / ...

“the category of sets” “the category of semigroups”
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Abstracting further using categories

A category = some objects with arrows between them

+ can take composition g o f when source(g) = target(f) + identity arrows

Sets and functions / sets and relations / semigroups and homomorphisms / ...

“the category of sets” “the category of semigroups”

Functors = “morphisms between categories”

F maps objects to objects, arrows f: A — B to F(f): F(A) — F(B), preserves o/id

e semigroup-to-set forgetful functor: A semigroup — underlying set of A

e set-to-semigroup A — A*

semigroup-to-semigroup A — A% or A — A% or ...

e etc.
12/15



Natural transformations

Let F,G: C — D be functors. A family of arrows 14 : F(A) — G(A) is natural when
Vf: A — B, n o F(f) = G(f) o na

Typical example: generic functions between data structures

List(A) = A*, List(f)([m1, . .., an]) = [f(a1), ... .flan)]  Maybe(A) = {None} + A4, ...

na: x € Maybe(A) — [x,x] if x € A else || € List(A)

a—2 [a,4a]
I\/Iaybe(f)l lList(f) ((1 # None)
fla) == [fla), fla)]

13/15



Conclusion

A language is regular <= the corresponding decision problem factors as

some morphism

E*

some finite (monoid|semigroup) — {yes,no}

The main theorem - category-theoretic version

A string-to-string function is regular < it factors as

o some morphism FT* outpx *

e for some semigroup-to-semigroup functor F with S finite = F(S) finite

e and some natural transformation out: UF = U (where U = forgetful to Set)

(=) doable using finitary register semigroups
Non-trivial proof of (<) morally extracting the “origin semantics” of the function 14/15
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Proof idea: functor — streaming string transducer

Key property of a “functorially recognized” function f: ¥* — I'*

For all u,v € ¥*, the parts of the output f(uv) “caused by” the input prefix u

consist of a bounded number of factors (contiguous subwords).

For f: w + cl?l . reverse(w), at most 2 factors: f(baa) = cccaab

— build a transducer whose registers store these factors after reading u
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Proof idea: functor — streaming string transducer

Key property of a “functorially recognized” function f: ¥* — I'*

For all u,v € ¥*, the parts of the output f(uv) “caused by” the input prefix u
consist of a bounded number of factors (contiguous subwords).

For f: w + cl?l . reverse(w), at most 2 factors: f(baa) = cccaab

— build a transducer whose registers store these factors after reading u

tr= .
2T, I'*, consider (@ = coproduct)

Formally: for f factored into X* 2, Fre
out (Fu(h(ba)) - Fu(h(a))) =cc-ca-ab € 3" & X*

Its “shape” 1 -1 - 1 is determined by (FT (h(ba)), FT (h(a))) € (F1)? (T:2*—=1)
+ (1 finite = F1 finite) ~~ finitely many shapes ~~ desired bound
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