Geometry of Interaction meets actually existing automata

Lé Thanh Diing (Tito) Nguyén — nltd@nguyentito.eu — ENS Lyon
Lambda Pros day @ IRIF — June 28th, 2023

1/14

Overview

The Gol [Geometry of Interaction] view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related
to the syntactic structure of the term. Somewhat suprisingly, so far this nearly
automata-theoretic flavour of Gol has not been exploited to establish connections
with automata models |...]

— Clairambault & Murawski, MFCS 2019

2/14

Overview

The Gol [Geometry of Interaction] view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related
to the syntactic structure of the term. Somewhat suprisingly, so far this nearly
automata-theoretic flavour of Gol has not been exploited to establish connections
with automata models |...]

— Clairambault & Murawski, MFCS 2019

e [Hines 2003, Katsumata 2008]: connections between categorical Gol & automata
inspired a new automaton model... which Cécilia Pradic and I studied

2/14

Overview

The Gol [Geometry of Interaction] view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related
to the syntactic structure of the term. Somewhat suprisingly, so far this nearly
automata-theoretic flavour of Gol has not been exploited to establish connections
with automata models |...]

— Clairambault & Murawski, MFCS 2019

e [Hines 2003, Katsumata 2008]: connections between categorical Gol & automata
inspired a new automaton model... which Cécilia Pradic and I studied
e Applications of token-machine Gol to “implicit automata” (cf. Cécilia’s talk),
or “higher-order transducers” (a la [Gallot, Lemay & Salvati 2020]):
ongoing work with Gabriele Vanoni

2/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”

q1,(alb) —q7 g ,cqy g5 ,(alble) = g3 g3 ,b— accept

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”
g0, @alb) = a7 arc— g3 (alble) = g5 g5, b accept

%

71

> a b a c <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”
i @b) = a7 qie—=aqy g3, (alble) = g5 g5, b accept

%

71

> a b a c <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”
i @b) = a7 qie—=aqy g3, (alble) = g5 g5, b accept

%

1

> a b a c <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”
i @b) = a7 qie—=aqy g3, (alble) = g5 g5, b accept

%

71

> a b a c <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”
g0, @lb) = aq" arc— g3 (alble) = g5 g5, b accept

F

12

> a b a c <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”

91 ,(alb) —q7 g ,c4q5 g5 ,(alble) — g5 g3 ,b— accept
<;
q3
> a b a C IO <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {477,495 .45 }, initial state g;”
g0, @lb) = a7 ar.c— g3 (alble) = g5 g5, b accept

—

q3

> a b a c <

Directed states are an old idea,! needed to define reversible two-way automata

!cf. e.g.].-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (2)

a1, (alb) =g q7,c—q5 gy ,(alblc) — g5 g5 ,b > accept

Graphical representation of transitions for each letter:

9 — 4

9% - 9%
5 q5

Reminder: two-way automata (2)

a1, (alb) =g q7,c—q5 gy ,(alblc) — g5 g5 ,b > accept

Graphical representation of transitions for each letter:

9 a1 "
9% - 9% - 9%
95 a5 —q5

Reminder: two-way automata (2)

a1, (alb) =g q7,c—q5 gy ,(alblc) — g5 g5 ,b > accept

Graphical representation of transitions for each letter:

9 a1 a q°
9% /q? /CE /Cﬁ
95 a5 —q5 a5

Reminder: two-way automata (2)

a1, (alb) =g q7,c—q5 gy ,(alblc) — g5 g5 ,b > accept

Graphical representation of transitions for each letter:

a am am a a

0y 0 0y 0y > s

qﬁ/q§4q§/q?/q§
a b a C

4/14

Reminder: two-way automata (2)

g7, @) = a7 qr,e—=qy g3 (alble) =5 g5, b accept
Graphical representation of transitions for each letter:

a Yy > a1 > a1 > a
/ /(_ 0 / /
a b a C

4/14

Reminder: two-way automata (2)

g7, @) = a7 qr,e—=qy g3 (alble) =5 g5, b accept
Graphical representation of transitions for each letter:

a Yy > a1 > a1 > a
/ /(_ 0 / /
a b a C

This is deterministic: outdegree < 1; even reversible: deterministic + indegree <1
4/14

Reminder: two-way automata (3)

Behaviors (or crossing types) form a monoid:

o — > 0 0 q

95 5 95 9 95

— / — / — — —

q3 q3 q3 q3 q3
a C ac

5/14

Reminder: two-way automata (3)

Behaviors (or crossing types) form a monoid:

o — > 0 A q

95 5 95 9 95

— / - / - - —

q3 q3 q3 q3 q3
a C ac

This monoid is finite, therefore two-way automata recognize regular languages

(modern account of “two-sided” variant of Shepherdson'’s construction (1959))

Reversible behaviors: closed under product, can recognize all regular languages
5/14

Describing the monoid of behaviors

Let Q = Q U Q7 be the set of directed states.

e A behavior is given by 4 partial functions

fieftsright: Q7 = Q7 fiefiosteft: Q7 = Q7 frightoslere: Q7 — QF
g

e Composition is a complicated thing that “follows paths”

6/14

Describing the monoid of behaviors

Let Q = Q U Q7 be the set of directed states.

e A behavior is given by 4 partial functions

freftoright: Q7 = Q7 fiefistert: Q7 = Q7 frightslest: Q7 — QT
e Composition is a complicated thing that “follows paths”

This is the case A =B = Q of A~ + B — A“ + B since it’s equivalent to
q

A = . A o . R =
fieft—right: A7 — B freftsteft: A7 — A fricht—left: B — A
g g

6/14

Describing the monoid of behaviors

Let Q = Q U Q7 be the set of directed states.

e A behavior is given by 4 partial functions

freftoright: Q7 = Q7 fiefistert: Q7 = Q7 frightslest: Q7 — QT
e Composition is a complicated thing that “follows paths”

This is the case A =B = Q of A7 + B~ — A™ + B~ since it’s equivalent to

A = . A o . R =
fieft—right: A7 — B freftsteft: A7 — A fricht—left: B — A
g g

Abstract even further: PSet(A™ + B, A~ + B7) (cat. of partial fn.)
for reversible behaviours, replace with Plnj (partial injections)

6/14

The general category-theoretic construction

Let (C, ®) be a monoidal category, e.g. (PSet, +). Consider a new category:

e anobject: A= (AT, A7) forAT, A~ €C

e a morphism A — B consists of a C-morphism A" ® B~ — A~ @ B"

7/14

The general category-theoretic construction

Let (C, ®) be a monoidal category, e.g. (PSet, +). Consider a new category:

e anobject: A= (AT, A7) forAT, A~ €C
e a morphism A — B consists of a C-morphism A" ® B~ — A~ @ B"

e composition... is complicated, and requires more structure on C

7/14

The general category-theoretic construction

Let (C, ®) be a monoidal category, e.g. (PSet, +). Consider a new category:

e anobject: A= (AT, A7) forAT, A~ €C
e a morphism A — B consists of a C-morphism A" ® B~ — A~ @ B"

e composition... is complicated, and requires more structure on C

~~ Int-construction on traced monoidal categories! [Joyal, Street & Verity 1996]

e Int(C) is automatically a semantics of linear A-calculus (compact closed category)

e as observed by Abramsky, Int(PInj) ~ Girard’s original Gol semantics

7/14

The general category-theoretic construction

Let (C, ®) be a monoidal category, e.g. (PSet, +). Consider a new category:

e anobject: A= (AT, A7) forAT, A~ €C
e a morphism A — B consists of a C-morphism A" ® B~ — A~ @ B"

e composition... is complicated, and requires more structure on C

~~ Int-construction on traced monoidal categories! [Joyal, Street & Verity 1996]

e Int(C) is automatically a semantics of linear A-calculus (compact closed category)

e as observed by Abramsky, Int(PInj) ~ Girard’s original Gol semantics

Int(PSet)|Int(Plnj))-automata = (deterministic|reversible) two-way automata
y
[Hines 2003], rephrased using the C-automata of [Colcombet & Petrisan 2017

7/14

Planar geometry of interaction

Just like our two-way behaviours, morphisms in Int(PSet) / Int(PInj) can be drawn
as diagrams. Categories of planar diagrams <+ non-commutative linear A-calculus

e order of arguments matters: \x. \y.t “must use x before y”

e equivalently, syntax tree with binding edges is planar...

8/14

Planar geometry of interaction

Just like our two-way behaviours, morphisms in Int(PSet) / Int(PInj) can be drawn
as diagrams. Categories of planar diagrams <+ non-commutative linear A-calculus

e order of arguments matters: \x. \y.t “must use x before y”

e equivalently, syntax tree with binding edges is planar...

[Abramsky 2007] introduces “planar counterpart of Int(PInj)” and observes its
monoids of endomorphisms already exist in knot theory (Kauffman monoids /

Temperley-Lieb algebras)

= a 2006 talk by Hines proposes looking at “planar two-way automata”
(but without characterizing their computational power...)

8/14

Planar behaviours: this drawing has no crossed edges

a7 qa’ qa’ a’ > a7

q

95 a5 a5 95 5
. / . / . / . / .
q3 q3 — 3 q3 q3

9/14

Planar behaviours: this drawing has no crossed edges

‘71‘ r_,/qi T T > T
7 T % Uy Uy
q?/q§4q§/ 3“/61?
Formally: for each of these 4 behaviors, the cyclic order
g < < < g <™ <™ < gt

does not contain any sub-cyclic-order x <y <z < w < x such that

e x and z are connected by an edge (either x — z or z — x)
e and y and w are also connected by an edge

— depends on the choice of total order q; < g2 < g3 014

Expressive power of planar two-way automata

Theorem (N. & Pradic, very soon on arXiv!)

Let L C ¥*. The following are equivalent:

o L is a star-free language.
o L is recognized by some planar deterministic two-way automaton.

o L is recognized by some planar reversible two-way automaton.

10/14

Expressive power of planar two-way automata

Theorem (N. & Pradic, very soon on arXiv!)

Let L C ¥*. The following are equivalent:

o L is a star-free language.
o L is recognized by some planar deterministic two-way automaton.

o L is recognized by some planar reversible two-way automaton.
Comes from the connection with non-commutative linear A-calculus:

we had used it previously to characterize star-free languages
Implicit automata in typed \-calculi I, 2020

10/14

Expressive power of planar two-way automata

Theorem (N. & Pradic, very soon on arXiv!)

Let L C ¥*. The following are equivalent:

o L is a star-free language.
o L is recognized by some planar deterministic two-way automaton.

o L is recognized by some planar reversible two-way automaton.

Comes from the connection with non-commutative linear \-calculus:
we had used it previously to characterize star-free languages
Implicit automata in typed \-calculi I, 2020

Next: extensions of two-way automata

10/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

Output: abcc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

!
(>4

[blcl#|bfalcl#][c]b]a]

Output: abccb

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

x|x

4, <l M (x € {a,b,c})

[alblcl#]blafjc#]c]b]d]

V<

Output: abccba

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

s pn

1
a

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba
11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

Output: abccba

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

s pn

1

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba
11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

1
a

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#b

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#ba

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#bac

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#bac

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

1
a

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#bacc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#bacca

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

x|x

4, <l M (x € {a,b,c})

!
(clafblc|#|blalc|#|c|b]]

Output: abccba#baccab

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

s pn

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab
11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

1
a

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

s pn

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab
11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab#

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x |4 Xle

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab#c

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

(>lalblcl#|blafc|#]c|b]

Output: abccba#baccab#cb

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(x € {a,b,c})

!
(>lafblcl#|blalcl#]|c]b]<]

Output: abccba#baccab#cb

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(>lalbfcl#lblafcl#]c|b]<]

Output: abccba#baccab#cbb

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

x|x

4, <l M (x € {a,b,c})

]
(clafblc|#|blalc|#|c|b]]

Output: abccba#baccab#cbbe

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

s pn

4, <l M (x € {a,b,c})

]
(clafblc|#|blalc|#|c|b]]

Output: abccba#baccab#cbbe
11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

s pn

4, <l M (x € {a,b,c})

!
(>lafblcl#|blalcl#]|c]b]<]

Output: abccba#baccab#cbbe
11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e Xle

(x € {a,b,c})

!
(clalblcl# | blalcl#[c[b]

Output: abccba#baccab#cbbe

11/14

Extensions of two-way automata

o Two-way transducers: Int(PSets-, (_)) (Kleisli category of writer monad)
o Tree automata over the monoidal category Int(PSet) = tree-walking automata

e Both extensions together: tree-walking transducers

12/14

Extensions of two-way automata

o Two-way transducers: Int(PSets-, (_)) (Kleisli category of writer monad)
o Tree automata over the monoidal category Int(PSet) = tree-walking automata

e Both extensions together: tree-walking transducers
... which “are essentially attribute grammars” [Engelfriet & Maneth 2003]

Connection between attribute grammars and the Int-construction: [Katsumata 2008]

12/14

Extensions of two-way automata

o Two-way transducers: Int(PSets-, (_)) (Kleisli category of writer monad)
o Tree automata over the monoidal category Int(PSet) = tree-walking automata

e Both extensions together: tree-walking transducers
... which “are essentially attribute grammars” [Engelfriet & Maneth 2003]

Connection between attribute grammars and the Int-construction: [Katsumata 2008]

Noam'’s “spliced arrow operad” = a special case of Int(PSety- (_)) over trees...
output string lang. of tree-walking transd. = multiple context-free languages

12/14

Applications to typed \-calculi

Could Pradic and I use semantic evaluation in Int(PSety-, (_)) to prove our
“implicit automata” characterizations of regular (tree) functions?

13/14

Applications to typed \-calculi

Could Pradic and I use semantic evaluation in Int(PSety-, (_)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

e not affine

e no additive connectives & /&

13/14

Applications to typed \-calculi

Could Pradic and I use semantic evaluation in Int(PSety-, (_)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

e not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based Gol mentioned at the beginning — ongoing work with Vanoni
e no additive connectives & /&

13/14

Applications to typed \-calculi

Could Pradic and I use semantic evaluation in Int(PSety-, (_)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

e not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based Gol mentioned at the beginning — ongoing work with Vanoni
e no additive connectives &/@: a feature rather than a bug, allows proving
Treex;[A] — Bool w/o & /@ C tree-walking automata \%/ reg. tree languages
[Bojariczyk & Colcombet 2005]

13/14

Applications to typed \-calculi

Could Pradic and I use semantic evaluation in Int(PSety-, (_)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

e not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based Gol mentioned at the beginning — ongoing work with Vanoni
e no additive connectives &/@: a feature rather than a bug, allows proving
Treex[A] —o Bool w/o0 & /@ C tree-walking automata \%/ reg. tree languages
[Bojariczyk & Colcombet 2005]
= additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

13/14

Applications to typed \-calculi

Could Pradic and I use semantic evaluation in Int(PSety-, (_)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

e not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based Gol mentioned at the beginning — ongoing work with Vanoni
e no additive connectives &/@: a feature rather than a bug, allows proving
Treex[A] —o Bool w/o0 & /@ C tree-walking automata \%/ reg. tree languages
[Bojariczyk & Colcombet 2005]
= additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] - work independent from ours

“Higher-order tree transducer” whose memory consists of an affine A-term;

no additives, but regular lookaround (~ preprocessing on input tree)
13/14

Final results and conclusion

Using the Interaction Abstract Machine, Vanoni and I also:

e reprove the results of [Gallot, Lemay & Salvati 2020],
e.g. MSO transductions w/ sharing <= tree transducer using “almost affine”
A-terms + regular lookaround
e show that almost affine higher-order tree transducers with “!-depth 1”
<= invisible pebble tree transducers [Engelfriet, Hoogeboom & Samwel 2007

14/14

Final results and conclusion

Using the Interaction Abstract Machine, Vanoni and I also:

e reprove the results of [Gallot, Lemay & Salvati 2020],
e.g. MSO transductions w/ sharing <= tree transducer using “almost affine”
A-terms + regular lookaround
e show that almost affine higher-order tree transducers with “!-depth 1”
<= invisible pebble tree transducers [Engelfriet, Hoogeboom & Samwel 2007

Recap of previous discussion (j.w.w. Pradic)

e Connections between Int(PSet) (categorical Geometry of Interaction),
two-way automata [Hines 2003] and tree-walking transducers [Katsumata 2008]

o Leads to planar two-way automata, recognizing star-free languages

and planar two-way transducers = aperiodic/first-order regular functions

14/14

Final results and conclusion

Using the Interaction Abstract Machine, Vanoni and I also:

e reprove the results of [Gallot, Lemay & Salvati 2020],
e.g. MSO transductions w/ sharing <= tree transducer using “almost affine”
A-terms + regular lookaround
e show that almost affine higher-order tree transducers with “!-depth 1”
<= invisible pebble tree transducers [Engelfriet, Hoogeboom & Samwel 2007

Recap of previous discussion (j.w.w. Pradic)

e Connections between Int(PSet) (categorical Geometry of Interaction),
two-way automata [Hines 2003] and tree-walking transducers [Katsumata 2008]

o Leads to planar two-way automata, recognizing star-free languages

and planar two-way transducers = aperiodic/first-order regular functions

14/14

