
Geometry of Interaction meets actually existing automata

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu — ÉNS Lyon
Lambda Pros day @ IRIF — June 28th, 2023

1/14

Overview

The GoI [Geometry of Interaction] view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related
to the syntactic structure of the term. Somewhat suprisingly, so far this nearly
automata-theoretic flavour of GoI has not been exploited to establish connections
with automata models […]

— Clairambault & Murawski, MFCS 2019

• [Hines 2003, Katsumata 2008]: connections between categorical GoI & automata
inspired a new automaton model… which Cécilia Pradic and I studied

• Applications of token-machine GoI to “implicit automata” (cf. Cécilia’s talk),
or “higher-order transducers” (à la [Gallot, Lemay & Salvati 2020]):

ongoing work with Gabriele Vanoni

2/14

Overview

The GoI [Geometry of Interaction] view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related
to the syntactic structure of the term. Somewhat suprisingly, so far this nearly
automata-theoretic flavour of GoI has not been exploited to establish connections
with automata models […]

— Clairambault & Murawski, MFCS 2019

• [Hines 2003, Katsumata 2008]: connections between categorical GoI & automata
inspired a new automaton model… which Cécilia Pradic and I studied

• Applications of token-machine GoI to “implicit automata” (cf. Cécilia’s talk),
or “higher-order transducers” (à la [Gallot, Lemay & Salvati 2020]):

ongoing work with Gabriele Vanoni

2/14

Overview

The GoI [Geometry of Interaction] view of computation makes it possible to
interpret computation as a token machine that traverses a graph strongly related
to the syntactic structure of the term. Somewhat suprisingly, so far this nearly
automata-theoretic flavour of GoI has not been exploited to establish connections
with automata models […]

— Clairambault & Murawski, MFCS 2019

• [Hines 2003, Katsumata 2008]: connections between categorical GoI & automata
inspired a new automaton model… which Cécilia Pradic and I studied

• Applications of token-machine GoI to “implicit automata” (cf. Cécilia’s talk),
or “higher-order transducers” (à la [Gallot, Lemay & Salvati 2020]):

ongoing work with Gabriele Vanoni

2/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1 q→1 q→1q←2q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1

q→1 q→1 q→1q←2q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1

q→1

q→1 q→1q←2q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1

q→1

q→1q←2q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1 q→1

q→1

q←2q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1 q→1 q→1

q←2

q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1 q→1 q→1q←2

q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (1)

Transitions: update finite state + move left/right depending on new state

Example: states Q = {q→1 , q←2 , q←3 }, initial state q→1

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept

▷ a b a c · · · ◁

q→1 q→1 q→1 q→1q←2

q←3

Directed states are an old idea,1 needed to define reversible two-way automata
1cf. e.g. J.-C. Birget, Concatenation of Inputs in a Two-Way Automaton (1989)

3/14

Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept
Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This is deterministic: outdegree ≤ 1; even reversible: deterministic + indegree ≤ 1

4/14

Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept
Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This is deterministic: outdegree ≤ 1; even reversible: deterministic + indegree ≤ 1

4/14

Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept
Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This is deterministic: outdegree ≤ 1; even reversible: deterministic + indegree ≤ 1

4/14

Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept
Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This is deterministic: outdegree ≤ 1; even reversible: deterministic + indegree ≤ 1

4/14

Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept
Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This is deterministic: outdegree ≤ 1; even reversible: deterministic + indegree ≤ 1

4/14

Reminder: two-way automata (2)

q→1 , (a|b) 7→ q→1 q→1 , c 7→ q←2 q←2 , (a|b|c) 7→ q←3 q←3 , b 7→ accept
Graphical representation of transitions for each letter:

· · · a b a c · · ·

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

This is deterministic: outdegree ≤ 1; even reversible: deterministic + indegree ≤ 1
4/14

Reminder: two-way automata (3)

Behaviors (or crossing types) form a monoid:

a c

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3
⇝

ac

q→1

q←2

q←3

q→1

q←2

q←3

This monoid is finite, therefore two-way automata recognize regular languages
(modern account of “two-sided” variant of Shepherdson’s construction (1959))

Reversible behaviors: closed under product, can recognize all regular languages

5/14

Reminder: two-way automata (3)

Behaviors (or crossing types) form a monoid:

a c

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3
⇝

ac

q→1

q←2

q←3

q→1

q←2

q←3

This monoid is finite, therefore two-way automata recognize regular languages
(modern account of “two-sided” variant of Shepherdson’s construction (1959))

Reversible behaviors: closed under product, can recognize all regular languages
5/14

Describing the monoid of behaviors

Let Q = Q← ∪Q→ be the set of directed states.

• A behavior is given by 4 partial functions

fleft→right : Q→ ⇀ Q→ fleft→left : Q→ ⇀ Q← fright→left : Q← ⇀ Q← . . .

• Composition is a complicated thing that “follows paths”

This is the case A = B = Q of A→ + B← ⇀ A← + B→ since it’s equivalent to

fleft→right : A→ ⇀ B→ fleft→left : A→ ⇀ A← fright→left : B← ⇀ A← . . .

Abstract even further: PSet(A→ + B←, A← + B→) (cat. of partial fn.)
for reversible behaviours, replace with PInj (partial injections)

6/14

Describing the monoid of behaviors

Let Q = Q← ∪Q→ be the set of directed states.

• A behavior is given by 4 partial functions

fleft→right : Q→ ⇀ Q→ fleft→left : Q→ ⇀ Q← fright→left : Q← ⇀ Q← . . .

• Composition is a complicated thing that “follows paths”

This is the case A = B = Q of A→ + B← ⇀ A← + B→ since it’s equivalent to

fleft→right : A→ ⇀ B→ fleft→left : A→ ⇀ A← fright→left : B← ⇀ A← . . .

Abstract even further: PSet(A→ + B←, A← + B→) (cat. of partial fn.)
for reversible behaviours, replace with PInj (partial injections)

6/14

Describing the monoid of behaviors

Let Q = Q← ∪Q→ be the set of directed states.

• A behavior is given by 4 partial functions

fleft→right : Q→ ⇀ Q→ fleft→left : Q→ ⇀ Q← fright→left : Q← ⇀ Q← . . .

• Composition is a complicated thing that “follows paths”

This is the case A = B = Q of A→ + B← ⇀ A← + B→ since it’s equivalent to

fleft→right : A→ ⇀ B→ fleft→left : A→ ⇀ A← fright→left : B← ⇀ A← . . .

Abstract even further: PSet(A→ + B←, A← + B→) (cat. of partial fn.)
for reversible behaviours, replace with PInj (partial injections)

6/14

The general category-theoretic construction

Let (C,⊗) be a monoidal category, e.g. (PSet,+). Consider a new category:

• an object: A = (A+,A−) for A+,A− ∈ C
• a morphism A→ B consists of a C-morphism A+ ⊗ B− → A− ⊗ B+

• composition… is complicated, and requires more structure on C

⇝ Int-construction on traced monoidal categories! [Joyal, Street & Verity 1996]

• Int(C) is automatically a semantics of linear λ-calculus (compact closed category)

• as observed by Abramsky, Int(PInj) ' Girard’s original GoI semantics

(Int(PSet)|Int(PInj))-automata = (deterministic|reversible) two-way automata
[Hines 2003], rephrased using the C-automata of [Colcombet & Petrişan 2017]

7/14

The general category-theoretic construction

Let (C,⊗) be a monoidal category, e.g. (PSet,+). Consider a new category:

• an object: A = (A+,A−) for A+,A− ∈ C
• a morphism A→ B consists of a C-morphism A+ ⊗ B− → A− ⊗ B+

• composition… is complicated, and requires more structure on C

⇝ Int-construction on traced monoidal categories! [Joyal, Street & Verity 1996]

• Int(C) is automatically a semantics of linear λ-calculus (compact closed category)

• as observed by Abramsky, Int(PInj) ' Girard’s original GoI semantics

(Int(PSet)|Int(PInj))-automata = (deterministic|reversible) two-way automata
[Hines 2003], rephrased using the C-automata of [Colcombet & Petrişan 2017]

7/14

The general category-theoretic construction

Let (C,⊗) be a monoidal category, e.g. (PSet,+). Consider a new category:

• an object: A = (A+,A−) for A+,A− ∈ C
• a morphism A→ B consists of a C-morphism A+ ⊗ B− → A− ⊗ B+

• composition… is complicated, and requires more structure on C

⇝ Int-construction on traced monoidal categories! [Joyal, Street & Verity 1996]

• Int(C) is automatically a semantics of linear λ-calculus (compact closed category)

• as observed by Abramsky, Int(PInj) ' Girard’s original GoI semantics

(Int(PSet)|Int(PInj))-automata = (deterministic|reversible) two-way automata
[Hines 2003], rephrased using the C-automata of [Colcombet & Petrişan 2017]

7/14

The general category-theoretic construction

Let (C,⊗) be a monoidal category, e.g. (PSet,+). Consider a new category:

• an object: A = (A+,A−) for A+,A− ∈ C
• a morphism A→ B consists of a C-morphism A+ ⊗ B− → A− ⊗ B+

• composition… is complicated, and requires more structure on C

⇝ Int-construction on traced monoidal categories! [Joyal, Street & Verity 1996]

• Int(C) is automatically a semantics of linear λ-calculus (compact closed category)

• as observed by Abramsky, Int(PInj) ' Girard’s original GoI semantics

(Int(PSet)|Int(PInj))-automata = (deterministic|reversible) two-way automata
[Hines 2003], rephrased using the C-automata of [Colcombet & Petrişan 2017]

7/14

Planar geometry of interaction

Just like our two-way behaviours, morphisms in Int(PSet) / Int(PInj) can be drawn
as diagrams. Categories of planar diagrams↔ non-commutative linear λ-calculus

• order of arguments matters: λx. λy. t “must use x before y”
• equivalently, syntax tree with binding edges is planar…

[Abramsky 2007] introduces “planar counterpart of Int(PInj)” and observes its
monoids of endomorphisms already exist in knot theory (Kauffman monoids /

Temperley-Lieb algebras)

⇒ a 2006 talk by Hines proposes looking at “planar two-way automata”
(but without characterizing their computational power…)

8/14

Planar geometry of interaction

Just like our two-way behaviours, morphisms in Int(PSet) / Int(PInj) can be drawn
as diagrams. Categories of planar diagrams↔ non-commutative linear λ-calculus

• order of arguments matters: λx. λy. t “must use x before y”
• equivalently, syntax tree with binding edges is planar…

[Abramsky 2007] introduces “planar counterpart of Int(PInj)” and observes its
monoids of endomorphisms already exist in knot theory (Kauffman monoids /

Temperley-Lieb algebras)

⇒ a 2006 talk by Hines proposes looking at “planar two-way automata”
(but without characterizing their computational power…)

8/14

Planar behaviours: this drawing has no crossed edges

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

Formally: for each of these 4 behaviors, the cyclic order

qleft1 ≺ qleft2 ≺ qleft3 ≺ qright3 ≺ qright2 ≺ qright1 ≺ qleft1

does not contain any sub-cyclic-order x ≺ y ≺ z ≺ w ≺ x such that

• x and z are connected by an edge (either x→ z or z→ x)
• and y and w are also connected by an edge

−→ depends on the choice of total order q1 < q2 < q3

9/14

Planar behaviours: this drawing has no crossed edges

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

Formally: for each of these 4 behaviors, the cyclic order

qleft1 ≺ qleft2 ≺ qleft3 ≺ qright3 ≺ qright2 ≺ qright1 ≺ qleft1

does not contain any sub-cyclic-order x ≺ y ≺ z ≺ w ≺ x such that

• x and z are connected by an edge (either x→ z or z→ x)
• and y and w are also connected by an edge

−→ depends on the choice of total order q1 < q2 < q3 9/14

Expressive power of planar two-way automata

Theorem (N. & Pradic, very soon on arXiv!)
Let L ⊆ Σ∗. The following are equivalent:

• L is a star-free language.
• L is recognized by some planar deterministic two-way automaton.
• L is recognized by some planar reversible two-way automaton.

Comes from the connection with non-commutative linear λ-calculus:
we had used it previously to characterize star-free languages

Implicit automata in typed λ-calculi I, 2020

Next: extensions of two-way automata

10/14

Expressive power of planar two-way automata

Theorem (N. & Pradic, very soon on arXiv!)
Let L ⊆ Σ∗. The following are equivalent:

• L is a star-free language.
• L is recognized by some planar deterministic two-way automaton.
• L is recognized by some planar reversible two-way automaton.

Comes from the connection with non-commutative linear λ-calculus:
we had used it previously to characterize star-free languages

Implicit automata in typed λ-calculi I, 2020

Next: extensions of two-way automata

10/14

Expressive power of planar two-way automata

Theorem (N. & Pradic, very soon on arXiv!)
Let L ⊆ Σ∗. The following are equivalent:

• L is a star-free language.
• L is recognized by some planar deterministic two-way automaton.
• L is recognized by some planar reversible two-way automaton.

Comes from the connection with non-commutative linear λ-calculus:
we had used it previously to characterize star-free languages

Implicit automata in typed λ-calculi I, 2020

Next: extensions of two-way automata

10/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

abccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

abccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: a

bccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: ab

ccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abc

cba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abc

cba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abcc

ba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccb

a#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#

baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#b

accab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#ba

ccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#bac

cab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#bac

cab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#bacc

ab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#bacca

b#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#baccab

#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#

cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#c

bbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: abccba#baccab#cb

bc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#cb

bc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#cbb

c

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#cbbc

11/14

Deterministic two-way transducers compute regular functions (cf. Cécilia’s talk)

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: abccba#baccab#cbbc

11/14

Extensions of two-way automata

• Two-way transducers: Int(PSetΣ∗×(−)) (Kleisli category of writer monad)
• Tree automata over the monoidal category Int(PSet) = tree-walking automata
• Both extensions together: tree-walking transducers

… which “are essentially attribute grammars” [Engelfriet & Maneth 2003]

Connection between attribute grammars and the Int-construction: [Katsumata 2008]

Noam’s “spliced arrow operad” ≈ a special case of Int(PSetΣ∗×(−)) over trees…
output string lang. of tree-walking transd. = multiple context-free languages

12/14

Extensions of two-way automata

• Two-way transducers: Int(PSetΣ∗×(−)) (Kleisli category of writer monad)
• Tree automata over the monoidal category Int(PSet) = tree-walking automata
• Both extensions together: tree-walking transducers

… which “are essentially attribute grammars” [Engelfriet & Maneth 2003]

Connection between attribute grammars and the Int-construction: [Katsumata 2008]

Noam’s “spliced arrow operad” ≈ a special case of Int(PSetΣ∗×(−)) over trees…
output string lang. of tree-walking transd. = multiple context-free languages

12/14

Extensions of two-way automata

• Two-way transducers: Int(PSetΣ∗×(−)) (Kleisli category of writer monad)
• Tree automata over the monoidal category Int(PSet) = tree-walking automata
• Both extensions together: tree-walking transducers

… which “are essentially attribute grammars” [Engelfriet & Maneth 2003]

Connection between attribute grammars and the Int-construction: [Katsumata 2008]

Noam’s “spliced arrow operad” ≈ a special case of Int(PSetΣ∗×(−)) over trees…
output string lang. of tree-walking transd. = multiple context-free languages

12/14

Applications to typed λ-calculi

Could Pradic and I use semantic evaluation in Int(PSetΣ∗×(−)) to prove our
“implicit automata” characterizations of regular (tree) functions?

Drawbacks:

• not affine

: superficial issue, just use the Interaction Abstract Machine instead
the token-based GoI mentioned at the beginning – ongoing work with Vanoni

• no additive connectives &/⊕

: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

13/14

Applications to typed λ-calculi

Could Pradic and I use semantic evaluation in Int(PSetΣ∗×(−)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

• not affine

: superficial issue, just use the Interaction Abstract Machine instead
the token-based GoI mentioned at the beginning – ongoing work with Vanoni

• no additive connectives &/⊕

: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

13/14

Applications to typed λ-calculi

Could Pradic and I use semantic evaluation in Int(PSetΣ∗×(−)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based GoI mentioned at the beginning – ongoing work with Vanoni

• no additive connectives &/⊕

: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

13/14

Applications to typed λ-calculi

Could Pradic and I use semantic evaluation in Int(PSetΣ∗×(−)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based GoI mentioned at the beginning – ongoing work with Vanoni

• no additive connectives &/⊕: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

13/14

Applications to typed λ-calculi

Could Pradic and I use semantic evaluation in Int(PSetΣ∗×(−)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based GoI mentioned at the beginning – ongoing work with Vanoni

• no additive connectives &/⊕: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

13/14

Applications to typed λ-calculi

Could Pradic and I use semantic evaluation in Int(PSetΣ∗×(−)) to prove our
“implicit automata” characterizations of regular (tree) functions? Drawbacks:

• not affine: superficial issue, just use the Interaction Abstract Machine instead
the token-based GoI mentioned at the beginning – ongoing work with Vanoni

• no additive connectives &/⊕: a feature rather than a bug, allows proving
TreeΣ[A]⊸ Bool w/o &/⊕ ⊆ tree-walking automata ⊊︸︷︷︸

[Bojańczyk & Colcombet 2005]

reg. tree languages

⇒ additive connectives must be included to generalize our characterization of
regular functions to trees (but they are incompatible with the result on star-free languages)

Alternatively, in [Gallot, Lemay & Salvati 2020] – work independent from ours
“Higher-order tree transducer” whose memory consists of an affine λ-term;
no additives, but regular lookaround (' preprocessing on input tree)

13/14

Final results and conclusion

Thanks for your attention! Questions?

Using the Interaction Abstract Machine, Vanoni and I also:

• reprove the results of [Gallot, Lemay & Salvati 2020],
e.g. MSO transductions w/ sharing ⇐⇒ tree transducer using “almost affine”

λ-terms + regular lookaround
• show that almost affine higher-order tree transducers with “!-depth 1”
⇐⇒ invisible pebble tree transducers [Engelfriet, Hoogeboom & Samwel 2007]

Recap of previous discussion (j.w.w. Pradic)

• Connections between Int(PSet) (categorical Geometry of Interaction),
two-way automata [Hines 2003] and tree-walking transducers [Katsumata 2008]

• Leads to planar two-way automata, recognizing star-free languages
and planar two-way transducers = aperiodic/first-order regular functions

14/14

Final results and conclusion

Thanks for your attention! Questions?

Using the Interaction Abstract Machine, Vanoni and I also:

• reprove the results of [Gallot, Lemay & Salvati 2020],
e.g. MSO transductions w/ sharing ⇐⇒ tree transducer using “almost affine”

λ-terms + regular lookaround
• show that almost affine higher-order tree transducers with “!-depth 1”
⇐⇒ invisible pebble tree transducers [Engelfriet, Hoogeboom & Samwel 2007]

Recap of previous discussion (j.w.w. Pradic)

• Connections between Int(PSet) (categorical Geometry of Interaction),
two-way automata [Hines 2003] and tree-walking transducers [Katsumata 2008]

• Leads to planar two-way automata, recognizing star-free languages
and planar two-way transducers = aperiodic/first-order regular functions

14/14

Final results and conclusion Thanks for your attention! Questions?

Using the Interaction Abstract Machine, Vanoni and I also:

• reprove the results of [Gallot, Lemay & Salvati 2020],
e.g. MSO transductions w/ sharing ⇐⇒ tree transducer using “almost affine”

λ-terms + regular lookaround
• show that almost affine higher-order tree transducers with “!-depth 1”
⇐⇒ invisible pebble tree transducers [Engelfriet, Hoogeboom & Samwel 2007]

Recap of previous discussion (j.w.w. Pradic)

• Connections between Int(PSet) (categorical Geometry of Interaction),
two-way automata [Hines 2003] and tree-walking transducers [Katsumata 2008]

• Leads to planar two-way automata, recognizing star-free languages
and planar two-way transducers = aperiodic/first-order regular functions

14/14

