
Implicit automata in typed λ-calculi

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu — ÉNS Lyon
partially based on joint work with Cécilia Pradic (Swansea University)

Università di Bologna, April 5th, 2023

1/22

Some motivations coming from the λ-calculus

Let’s consider the simply typed λ-calculus (I assume basic familiarity).

It’s a programming language, so it computes, right? And it’s not Turing-complete

−→ typical “power” question: what does it compute?

Some results known for a long time, e.g.

Theorem (Schwichtenberg 1975)
The functions Nk → N definable by simply-typed λ-terms t : Nat → · · · → Nat → Nat
are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

where Nat is the type of Church numerals.

2/22

Some motivations coming from the λ-calculus

Let’s consider the simply typed λ-calculus (I assume basic familiarity).

It’s a programming language, so it computes, right? And it’s not Turing-complete
−→ typical “power” question: what does it compute?

Some results known for a long time, e.g.

Theorem (Schwichtenberg 1975)
The functions Nk → N definable by simply-typed λ-terms t : Nat → · · · → Nat → Nat
are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

where Nat is the type of Church numerals.

2/22

Some motivations coming from the λ-calculus

Let’s consider the simply typed λ-calculus (I assume basic familiarity).

It’s a programming language, so it computes, right? And it’s not Turing-complete
−→ typical “power” question: what does it compute?

Some results known for a long time, e.g.

Theorem (Schwichtenberg 1975)
The functions Nk → N definable by simply-typed λ-terms t : Nat → · · · → Nat → Nat
are the extended polynomials (generated by 0, 1, +, ×, id and ifzero).

where Nat is the type of Church numerals.

2/22

Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (o → o) → o → o

n ∈ N ⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• for n ∈ N, we have n : Nat

therefore
n : Nat[A] = Nat[A/o] = (A → A) → A → A

• conversely t : Nat =⇒ ∃n ∈ N. t =βη n

Schwichtenberg 1975: Nat → · · · → Nat → Nat = extended polynomials

Question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?

For Nat[A] → Bool, there is a nice characterisation!

3/22

Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (o → o) → o → o

n ∈ N ⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• for n ∈ N, we have n : Nat therefore

n : Nat[A] = Nat[A/o] = (A → A) → A → A
• conversely t : Nat =⇒ ∃n ∈ N. t =βη n

Schwichtenberg 1975: Nat → · · · → Nat → Nat = extended polynomials
Question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?

For Nat[A] → Bool, there is a nice characterisation!

3/22

Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (o → o) → o → o

n ∈ N ⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• for n ∈ N, we have n : Nat therefore

n : Nat[A] = Nat[A/o] = (A → A) → A → A
• conversely t : Nat =⇒ ∃n ∈ N. t =βη n

Schwichtenberg 1975: Nat → · · · → Nat → Nat = extended polynomials
Question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?

For Nat[A] → Bool, there is a nice characterisation!

3/22

Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (o → o) → o → o

n ∈ N ⇝ n = λf. λx. f (. . . (f x) . . .) : Nat with n times f
• for n ∈ N, we have n : Nat therefore

n : Nat[A] = Nat[A/o] = (A → A) → A → A
• conversely t : Nat =⇒ ∃n ∈ N. t =βη n

Schwichtenberg 1975: Nat → · · · → Nat → Nat = extended polynomials
Question
Choose some simple type A and some term t : Nat[A] → Nat.
What functions N → N can be defined this way?

For Nat[A] → Bool, there is a nice characterisation!

3/22

Defining languages in the simply typed λ-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011 −→β 011 id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

4/22

Defining languages in the simply typed λ-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011 −→β 011 id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

4/22

Defining languages in the simply typed λ-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011 −→β 011 id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

4/22

Defining languages in the simply typed λ-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
' fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = λf0. λf1. λx. f0 (f1 (f1 x)) : Str{0,1} = (o → o) → (o → o) → o → o

Simply typed λ-terms t : Str{0,1}[A] → Bool define languages L ⊆ {0, 1}∗

Example: t = λs. s id not true : Str{0,1}[Bool] → Bool (even number of 1s)

t 011 −→β 011 id not true −→β id (not (not true)) −→β true

Theorem (Hillebrand & Kanellakis 1996)
All regular languages, and only those, can be defined this way.

4/22

Regular languages in STLC and implicit complexity

Template for theorems at the structure/power interface
The languages/functions computed by programs of type T in the programming
language P are exactly those in the class C.

(dichotomy taken from Abramsky, cf. e.g. the Structure meets Power workshop)

• Hillebrand & Kanellakis: P = simply typed λ-calculus, C = regular languages
• Good news: unlike “extended polynomials”, a central object in

another field of computer science, namely automata theory
• The definition will be recalled soon

• Implicit computational complexity: C is a complexity class e.g. P, NP, …
• ICC has been an active research field since the 1990s (cf. Péchoux’s HDR)
• Historical example (Girard): P = Light Linear Logic, C = P (polynomial time)

Our “implicit automata” research programme: C coming from automata theory

5/22

Regular languages in STLC and implicit complexity

Template for theorems at the structure/power interface
The languages/functions computed by programs of type T in the programming
language P are exactly those in the class C.

(dichotomy taken from Abramsky, cf. e.g. the Structure meets Power workshop)

• Hillebrand & Kanellakis: P = simply typed λ-calculus, C = regular languages
• Good news: unlike “extended polynomials”, a central object in

another field of computer science, namely automata theory
• The definition will be recalled soon

• Implicit computational complexity: C is a complexity class e.g. P, NP, …
• ICC has been an active research field since the 1990s (cf. Péchoux’s HDR)
• Historical example (Girard): P = Light Linear Logic, C = P (polynomial time)

Our “implicit automata” research programme: C coming from automata theory

5/22

Regular languages in STLC and implicit complexity

Template for theorems at the structure/power interface
The languages/functions computed by programs of type T in the programming
language P are exactly those in the class C.

(dichotomy taken from Abramsky, cf. e.g. the Structure meets Power workshop)

• Hillebrand & Kanellakis: P = simply typed λ-calculus, C = regular languages
• Good news: unlike “extended polynomials”, a central object in

another field of computer science, namely automata theory
• The definition will be recalled soon

• Implicit computational complexity: C is a complexity class e.g. P, NP, …
• ICC has been an active research field since the 1990s (cf. Péchoux’s HDR)
• Historical example (Girard): P = Light Linear Logic, C = P (polynomial time)

Our “implicit automata” research programme: C coming from automata theory

5/22

Grandeur et misère de la complexité implicite

Implicit complexity has been very successful in capturing lots of different
complexity classes!

But the programming languages involved are often ad-hoc…
Several systems […] have been produced; my favourite being LLL, light linear
logic, which […] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules
which achieve certain effects, but are not justified by use, not even by some natural
“semantic” considerations. — Girard, From Foundations to Ludics

Yet we didn’t ask for regular languages to appear in the simply typed λ-calculus!

“Implicit automata” challenge: find natural characterisations for other
automata-theoretic classes of languages/functions using typed λ-calculi

6/22

Grandeur et misère de la complexité implicite

Implicit complexity has been very successful in capturing lots of different
complexity classes! But the programming languages involved are often ad-hoc…

Several systems […] have been produced; my favourite being LLL, light linear
logic, which […] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules
which achieve certain effects, but are not justified by use, not even by some natural
“semantic” considerations. — Girard, From Foundations to Ludics

Yet we didn’t ask for regular languages to appear in the simply typed λ-calculus!

“Implicit automata” challenge: find natural characterisations for other
automata-theoretic classes of languages/functions using typed λ-calculi

6/22

Grandeur et misère de la complexité implicite

Implicit complexity has been very successful in capturing lots of different
complexity classes! But the programming languages involved are often ad-hoc…

Several systems […] have been produced; my favourite being LLL, light linear
logic, which […] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules
which achieve certain effects, but are not justified by use, not even by some natural
“semantic” considerations. — Girard, From Foundations to Ludics

Yet we didn’t ask for regular languages to appear in the simply typed λ-calculus!

“Implicit automata” challenge: find natural characterisations for other
automata-theoretic classes of languages/functions using typed λ-calculi

6/22

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA): e.g. drawing below

even odd

0
1

0

1

7/22

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA)
• algebraic definition below (very close to DFA), e.g. M = Z/(2)

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a
finite monoid M and a subset P ⊆ M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Later in the talk: generalizations to functions Σ∗ → Γ∗

Before that: proof for languages in STLC

7/22

Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (DFA/NFA)
• algebraic definition below (very close to DFA), e.g. M = Z/(2)

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are a monoid morphism φ : Σ∗ → M to a
finite monoid M and a subset P ⊆ M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Later in the talk: generalizations to functions Σ∗ → Γ∗

Before that: proof for languages in STLC

7/22

Proof of STLC-definable =⇒ regular

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any simply typed λ-term t : StrΣ[A] → Bool,
the language L(t) = {w ∈ Σ∗ | t w →∗

β true} is regular.

Part 1 of proof.
Fix type A. Any denotational semantics J−K quotients words:

w ∈ Σ∗ ⇝ w : Str[A]⇝ JwKStrΣ[A] ∈ JStrΣ[A]K
JwKStrΣ[A] determines behavior of w w.r.t. all StrΣ[A] → Bool terms:

w ∈ L(t) ⇐⇒ t w →∗
β true ⇐⇒︸ ︷︷ ︸
assuming JtrueK̸=JfalseKJt wK = JtK(JwK) = JtrueK

Goal: to decide L(t), compute w 7→ JwK in some denotational model.
8/22

Proof of STLC-definable =⇒ regular

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any simply typed λ-term t : StrΣ[A] → Bool,
the language L(t) = {w ∈ Σ∗ | t w →∗

β true} is regular.

Part 2 of proof.
We use J−K : STLC → FinSet to build a DFA with states Q = JStrΣ[A]K,
acceptation as JtK(−) = JtrueK.

(|Q| < ∞, e.g. 22134 when A = Bool & | JoK | = 2 = |Σ|)

JεK JaK q
ab

y q
abb

y ...a b b

w ∈ L(t) ⇐⇒ JtK(JwKStrΣ[A]

)
= JtrueK ⇐⇒ w accepted

−→ semantic evaluation argument (variant: morphism to monoid JStrΣ[A]K) 8/22

Proof of STLC-definable =⇒ regular

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any simply typed λ-term t : StrΣ[A] → Bool,
the language L(t) = {w ∈ Σ∗ | t w →∗

β true} is regular.

Part 2 of proof.
We use J−K : STLC → FinSet to build a DFA with states Q = JStrΣ[A]K,
acceptation as JtK(−) = JtrueK. (|Q| < ∞, e.g. 22134 when A = Bool & | JoK | = 2 = |Σ|)

JεK JaK q
ab

y q
abb

y ...a b b

w ∈ L(t) ⇐⇒ JtK(JwKStrΣ[A]

)
= JtrueK ⇐⇒ w accepted

−→ semantic evaluation argument (variant: morphism to monoid JStrΣ[A]K) 8/22

Usual transduction classes (functions Γ∗ → Σ∗)

What is the right generalization of regular languages to transductions?
There are several canonical ones!

sequential fonctions︸ ︷︷ ︸
deterministic finite transducers

⊊ rational functions︸ ︷︷ ︸
nondeterministic transducers

⊊ regular functions

(“rational languages” = name for regular languages in the French tradition)

• those classes are closed under composition
• preservation property: L regular =⇒ f−1(L) regular

We shall be interested in regular functions; many definitions,
such as streaming string transducers

9/22

Usual transduction classes (functions Γ∗ → Σ∗)

What is the right generalization of regular languages to transductions?
There are several canonical ones!

sequential fonctions︸ ︷︷ ︸
deterministic finite transducers

⊊ rational functions︸ ︷︷ ︸
nondeterministic transducers

⊊ regular functions

(“rational languages” = name for regular languages in the French tradition)

• those classes are closed under composition
• preservation property: L regular =⇒ f−1(L) regular

We shall be interested in regular functions; many definitions,
such as streaming string transducers

9/22

Usual transduction classes (functions Γ∗ → Σ∗)

What is the right generalization of regular languages to transductions?
There are several canonical ones!

sequential fonctions︸ ︷︷ ︸
deterministic finite transducers

⊊ rational functions︸ ︷︷ ︸
nondeterministic transducers

⊊ regular functions

(“rational languages” = name for regular languages in the French tradition)

• those classes are closed under composition
• preservation property: L regular =⇒ f−1(L) regular

We shall be interested in regular functions; many definitions,
such as streaming string transducers

9/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ε Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a
↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = a Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ca Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

X = aca Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

X = baca Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

X = ε Y = baca#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

X = b Y = baca#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

X = cb Y = baca#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

X = ε Y = baca#cb#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

X = c Y = baca#cb#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

X = ac Y = baca#cb#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ac Y = baca#cb# mapReverse(. . .) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Streaming string transducers [Alur & Černý 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗

w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ac Y = baca#cb# mapReverse(. . .) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

10/22

Linearity

Regular functions = computed by copyless streaming string transducers
Restrictions on “copying power”: old theme in automaton theory

λ-calculus counterpart: linear types (Girard 1987)
Here, we use the “λℓ⊕&-calculus” = Dual Intuitionistic Linear Logic

+ additive connectives ⊕,&

(linear = exactly once; additives allow us to simulate at most once (affine))

A,B ::= o |
multiplicatives︷ ︸︸ ︷

A⊸ B︸ ︷︷ ︸
linear functions

| A⊗ B |
additives︷ ︸︸ ︷

A& B | A⊕ B | A → B︸ ︷︷ ︸
non-linear functions

11/22

Linearity

Regular functions = computed by copyless streaming string transducers
Restrictions on “copying power”: old theme in automaton theory

λ-calculus counterpart: linear types (Girard 1987)
Here, we use the “λℓ⊕&-calculus” = Dual Intuitionistic Linear Logic

+ additive connectives ⊕,&

(linear = exactly once; additives allow us to simulate at most once (affine))

A,B ::= o |
multiplicatives︷ ︸︸ ︷

A⊸ B︸ ︷︷ ︸
linear functions

| A⊗ B |
additives︷ ︸︸ ︷

A& B | A⊕ B | A → B︸ ︷︷ ︸
non-linear functions

11/22

Linearity

Regular functions = computed by copyless streaming string transducers
Restrictions on “copying power”: old theme in automaton theory

λ-calculus counterpart: linear types (Girard 1987)
Here, we use the “λℓ⊕&-calculus” = Dual Intuitionistic Linear Logic

+ additive connectives ⊕,&

(linear = exactly once; additives allow us to simulate at most once (affine))

A,B ::= o |
multiplicatives︷ ︸︸ ︷

A⊸ B︸ ︷︷ ︸
linear functions

| A⊗ B |
additives︷ ︸︸ ︷

A& B | A⊕ B | A → B︸ ︷︷ ︸
non-linear functions

11/22

First steps in implicit transducers

Linear Church encodings
Str{a,b} = (o⊸ o) → (o⊸ o) → (o⊸ o), mutatis mutandis for StrΣ

Definition: a type of the λℓ⊕&-calculus is purely linear if it contains no “→”
Theorem (N. & Pradic; proof technique on next slides)
f : Γ∗ → Σ∗ is regular ⇐⇒ ∃ a purely linear type A and t : StrΓ[A]⊸ StrΣ

in the λℓ⊕&-calculus such that ∀w ∈ Γ∗, f(w) =β t w

• works also for regular tree-to-tree functions
• similar to “linear high-order tree transducers” [Gallot, Lemay & Salvati 2020]

→ characterize reg. tree fn. w/o additives, but with “regular lookahead”
• StrΓ[A] → StrΣ instead⇝ discovery [N., Noûs & Pradic 2021] of

a natural subclass of the polyregular functions [Bojańczyk 2018]

12/22

First steps in implicit transducers

Linear Church encodings
Str{a,b} = (o⊸ o) → (o⊸ o) → (o⊸ o), mutatis mutandis for StrΣ

Definition: a type of the λℓ⊕&-calculus is purely linear if it contains no “→”
Theorem (N. & Pradic; proof technique on next slides)
f : Γ∗ → Σ∗ is regular ⇐⇒ ∃ a purely linear type A and t : StrΓ[A]⊸ StrΣ

in the λℓ⊕&-calculus such that ∀w ∈ Γ∗, f(w) =β t w

• works also for regular tree-to-tree functions
• similar to “linear high-order tree transducers” [Gallot, Lemay & Salvati 2020]

→ characterize reg. tree fn. w/o additives, but with “regular lookahead”
• StrΓ[A] → StrΣ instead⇝ discovery [N., Noûs & Pradic 2021] of

a natural subclass of the polyregular functions [Bojańczyk 2018]
12/22

Semantic evaluation and categorical automata theory

Again, go from typed λ-terms to automata via denotational semantics

• naive semantics of the simply typed λ-calculus in finite sets
−→ finite automata (Hillebrand & Kanellakis’s theorem)

Approach for our “implicit transducer” results

• Find a monoidal closed category C
(provides a semantics for the purely linear fragment of the λℓ⊕&-calculus)

• such that C-automata compute regular functions
(notion of automaton over a category used here: [Colcombet & Petrişan 2017])

e.g. C = Int(PFinSet)⇝ two-way automata [Hines 2003]
−→ connection with geometry of interaction, but does not handle additives

13/22

Semantic evaluation and categorical automata theory

Again, go from typed λ-terms to automata via denotational semantics

• naive semantics of the simply typed λ-calculus in finite sets
−→ finite automata (Hillebrand & Kanellakis’s theorem)

Approach for our “implicit transducer” results

• Find a monoidal closed category C
(provides a semantics for the purely linear fragment of the λℓ⊕&-calculus)

• such that C-automata compute regular functions
(notion of automaton over a category used here: [Colcombet & Petrişan 2017])

e.g. C = Int(PFinSet)⇝ two-way automata [Hines 2003]
−→ connection with geometry of interaction, but does not handle additives

13/22

Semantic evaluation and categorical automata theory

Again, go from typed λ-terms to automata via denotational semantics

• naive semantics of the simply typed λ-calculus in finite sets
−→ finite automata (Hillebrand & Kanellakis’s theorem)

Approach for our “implicit transducer” results

• Find a monoidal closed category C
(provides a semantics for the purely linear fragment of the λℓ⊕&-calculus)

• such that C-automata compute regular functions
(notion of automaton over a category used here: [Colcombet & Petrişan 2017])

e.g. C = Int(PFinSet)⇝ two-way automata [Hines 2003]
−→ connection with geometry of interaction, but does not handle additives

13/22

Semantic evaluation and categorical automata theory

Again, go from typed λ-terms to automata via denotational semantics

• naive semantics of the simply typed λ-calculus in finite sets
−→ finite automata (Hillebrand & Kanellakis’s theorem)

Approach for our “implicit transducer” results

• Find a monoidal closed category C
(provides a semantics for the purely linear fragment of the λℓ⊕&-calculus)

• such that C-automata compute regular functions
(notion of automaton over a category used here: [Colcombet & Petrişan 2017])

e.g. C = Int(PFinSet)⇝ two-way automata [Hines 2003]
−→ connection with geometry of interaction, but does not handle additives

13/22

Monoidal closed categories vs streaming string transducers

Copyless streaming string transducers ' SR⊕-automata

• SR = category of copyless transitions between finite sets of registers
• (−)⊕ = free finite coproduct completion ' adds finite states

• Issue: SR⊕ is merely “partially” monoidal closed…
• However, (SR&)⊕ is monoidal closed ((−)& = product completion)

((−)&)⊕ completion ' adding finite states with non-determinism

• copyless SSTs can be determinised [Alur & Deshmukh 2011]

• our work: categorical determinisation using the existence of some
“function spaces” A⊸ B = “partial” monoidal closure!

14/22

Monoidal closed categories vs streaming string transducers

Copyless streaming string transducers ' SR⊕-automata

• SR = category of copyless transitions between finite sets of registers
• (−)⊕ = free finite coproduct completion ' adds finite states

• Issue: SR⊕ is merely “partially” monoidal closed…

• However, (SR&)⊕ is monoidal closed ((−)& = product completion)

((−)&)⊕ completion ' adding finite states with non-determinism

• copyless SSTs can be determinised [Alur & Deshmukh 2011]

• our work: categorical determinisation using the existence of some
“function spaces” A⊸ B = “partial” monoidal closure!

14/22

Monoidal closed categories vs streaming string transducers

Copyless streaming string transducers ' SR⊕-automata

• SR = category of copyless transitions between finite sets of registers
• (−)⊕ = free finite coproduct completion ' adds finite states

• Issue: SR⊕ is merely “partially” monoidal closed…
• However, (SR&)⊕ is monoidal closed ((−)& = product completion)

((−)&)⊕ completion ' adding finite states with non-determinism

• copyless SSTs can be determinised [Alur & Deshmukh 2011]

• our work: categorical determinisation using the existence of some
“function spaces” A⊸ B = “partial” monoidal closure!

14/22

Monoidal closed categories vs streaming string transducers

Copyless streaming string transducers ' SR⊕-automata

• SR = category of copyless transitions between finite sets of registers
• (−)⊕ = free finite coproduct completion ' adds finite states

• Issue: SR⊕ is merely “partially” monoidal closed…
• However, (SR&)⊕ is monoidal closed ((−)& = product completion)

((−)&)⊕ completion ' adding finite states with non-determinism

• copyless SSTs can be determinised [Alur & Deshmukh 2011]

• our work: categorical determinisation using the existence of some
“function spaces” A⊸ B = “partial” monoidal closure!

14/22

Monoidal closed categories vs streaming string transducers

Copyless streaming string transducers ' SR⊕-automata

• SR = category of copyless transitions between finite sets of registers
• (−)⊕ = free finite coproduct completion ' adds finite states

• Issue: SR⊕ is merely “partially” monoidal closed…
• However, (SR&)⊕ is monoidal closed ((−)& = product completion)

((−)&)⊕ completion ' adding finite states with non-determinism

• copyless SSTs can be determinised [Alur & Deshmukh 2011]

• our work: categorical determinisation using the existence of some
“function spaces” A⊸ B = “partial” monoidal closure!

14/22

Monoidal closed structure on the category (SR&)⊕

In (C&)⊕, we have
⊕

u
˘

xAu,x⊸
⊕

v
˘

y Bv,y =
˘

u
⊕

v
˘

y
⊕

xAu,x⊸ Bv,y

Theorem (“Dialectica-like” construction inspired by [Gödel, de Paiva, Hofstra])
Let C a symmetric monoidal category. If the function space A⊸ B exists
in C⊕ for all A,B ∈ Obj(C), then (C&)⊕ is monoidal closed.

For A,B ∈ Obj(SR): decompose morphismsX := abXcY
Y := ba

⇝ shape

X := Z1XZ2Y
Y := Z3

+ labels Z1 = ab, . . .

copyless =⇒ finite number of possible shapes =⇒ A⊸ B ∈ Obj(SR⊕)

This decomposition is a classical technique, also used to show that comparison-free
polyregular functions are closed under composition in our ICALP’21 paper.

15/22

Monoidal closed structure on the category (SR&)⊕

In (C&)⊕, we have
⊕

u
˘

xAu,x⊸
⊕

v
˘

y Bv,y =
˘

u
⊕

v
˘

y
⊕

xAu,x⊸ Bv,y

Theorem (“Dialectica-like” construction inspired by [Gödel, de Paiva, Hofstra])
Let C a symmetric monoidal category. If the function space A⊸ B exists
in C⊕ for all A,B ∈ Obj(C), then (C&)⊕ is monoidal closed.

For A,B ∈ Obj(SR): decompose morphismsX := abXcY
Y := ba

⇝ shape

X := Z1XZ2Y
Y := Z3

+ labels Z1 = ab, . . .

copyless =⇒ finite number of possible shapes =⇒ A⊸ B ∈ Obj(SR⊕)

This decomposition is a classical technique, also used to show that comparison-free
polyregular functions are closed under composition in our ICALP’21 paper.

15/22

Monoidal closed structure on the category (SR&)⊕

In (C&)⊕, we have
⊕

u
˘

xAu,x⊸
⊕

v
˘

y Bv,y =
˘

u
⊕

v
˘

y
⊕

xAu,x⊸ Bv,y

Theorem (“Dialectica-like” construction inspired by [Gödel, de Paiva, Hofstra])
Let C a symmetric monoidal category. If the function space A⊸ B exists
in C⊕ for all A,B ∈ Obj(C), then (C&)⊕ is monoidal closed.

For A,B ∈ Obj(SR): decompose morphismsX := abXcY
Y := ba

⇝ shape

X := Z1XZ2Y
Y := Z3

+ labels Z1 = ab, . . .

copyless =⇒ finite number of possible shapes =⇒ A⊸ B ∈ Obj(SR⊕)

This decomposition is a classical technique, also used to show that comparison-free
polyregular functions are closed under composition in our ICALP’21 paper.

15/22

What happens without linearity?

Copyless streaming string transducers ⇐⇒ regular functions
⇐⇒ a linear λ-calculus (λℓ⊕&).

Let’s drop linearity: copyful SSTs can be encoded in the simply typed λ-calculus.

• polynomial example: abc 7→ (a)(ab)(abc) with a 7→

X := Xa
Y := YX

• can grow up to exponentially, e.g. X := XX

−→ not closed under composition; by composing we get towers of exp,
matching the known growth rate for simply typed λ-calculus

exp = λn. n (mult 2) 1 : Nat[Nat] → Nat

So, what is known about (compositions of) copyful SSTs?

16/22

What happens without linearity?

Copyless streaming string transducers ⇐⇒ regular functions
⇐⇒ a linear λ-calculus (λℓ⊕&).

Let’s drop linearity: copyful SSTs can be encoded in the simply typed λ-calculus.

• polynomial example: abc 7→ (a)(ab)(abc) with a 7→

X := Xa
Y := YX

• can grow up to exponentially, e.g. X := XX

−→ not closed under composition; by composing we get towers of exp,
matching the known growth rate for simply typed λ-calculus

exp = λn. n (mult 2) 1 : Nat[Nat] → Nat

So, what is known about (compositions of) copyful SSTs?

16/22

What happens without linearity?

Copyless streaming string transducers ⇐⇒ regular functions
⇐⇒ a linear λ-calculus (λℓ⊕&).

Let’s drop linearity: copyful SSTs can be encoded in the simply typed λ-calculus.

• polynomial example: abc 7→ (a)(ab)(abc) with a 7→

X := Xa
Y := YX

• can grow up to exponentially, e.g. X := XX

−→ not closed under composition; by composing we get towers of exp,
matching the known growth rate for simply typed λ-calculus

exp = λn. n (mult 2) 1 : Nat[Nat] → Nat

So, what is known about (compositions of) copyful SSTs?

16/22

What happens without linearity?

Copyless streaming string transducers ⇐⇒ regular functions
⇐⇒ a linear λ-calculus (λℓ⊕&).

Let’s drop linearity: copyful SSTs can be encoded in the simply typed λ-calculus.

• polynomial example: abc 7→ (a)(ab)(abc) with a 7→

X := Xa
Y := YX

• can grow up to exponentially, e.g. X := XX

−→ not closed under composition; by composing we get towers of exp,
matching the known growth rate for simply typed λ-calculus

exp = λn. n (mult 2) 1 : Nat[Nat] → Nat

So, what is known about (compositions of) copyful SSTs?

16/22

What happens without linearity?

Copyless streaming string transducers ⇐⇒ regular functions
⇐⇒ a linear λ-calculus (λℓ⊕&).

Let’s drop linearity: copyful SSTs can be encoded in the simply typed λ-calculus.

• polynomial example: abc 7→ (a)(ab)(abc) with a 7→

X := Xa
Y := YX

• can grow up to exponentially, e.g. X := XX

−→ not closed under composition; by composing we get towers of exp,
matching the known growth rate for simply typed λ-calculus

exp = λn. n (mult 2) 1 : Nat[Nat] → Nat

So, what is known about (compositions of) copyful SSTs?
16/22

A robust class of hyperexponential transductions

Macro tree transducers (MTTs) generalize copyful SSTs to trees.

Theorem (Engelfriet & Vogler 1988)
Compositions of MTTs ⇐⇒ iterated pushdown transducers

using stacks of … of stacks of input pointers
⇐⇒ “High level tree transducers”

' registers storing simply typed λ-terms

Trivial observation
This is included in the simply typed λ-definable tree functions.

But we’ll see why the converse might fail, via a detour through infinite structures
(subtle restrictions on which λ-terms may appear in registers)

17/22

A robust class of hyperexponential transductions

Macro tree transducers (MTTs) generalize copyful SSTs to trees.

Theorem (Engelfriet & Vogler 1988)
Compositions of MTTs ⇐⇒ iterated pushdown transducers

using stacks of … of stacks of input pointers
⇐⇒ “High level tree transducers”

' registers storing simply typed λ-terms

Trivial observation
This is included in the simply typed λ-definable tree functions.

But we’ll see why the converse might fail, via a detour through infinite structures
(subtle restrictions on which λ-terms may appear in registers)

17/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

(q0, [])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
(q1, []) (q0, [∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
(q1, []) a

(q1, [∗]) (q0, [∗∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
(q1, []) a

(q1, [∗]) a
(q1, [∗∗]) (q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

(q1, [∗]) a
(q1, [∗∗]) (q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

(q1, [])

a
(q1, [∗∗]) (q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a
(q1, [∗∗]) (q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a

b

(q1, [∗])

(q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a

b

b

(q1, [])

(q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a

b

b

c

(q0, [∗ ∗ ∗])

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a

b

b

c

· · ·

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a

b

b

c

· · ·

Church encoding:
a︷ ︸︸ ︷

(o → o → o) →
b︷ ︸︸ ︷

(o → o) →
c
↓
o → o

λa. λb. λc. let rec f = λx. a x (f (b x)) in f c

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

a
c a

b

c

a

b

b

c

· · ·

Church encoding:
a︷ ︸︸ ︷

(o → o → o) →
b︷ ︸︸ ︷

(o → o) →
c
↓
o → o

λa. λb. λc. let rec f = λx. a x (f (b x)) in f c

Theorem (Damm ’82; Knapkik, Niwiński & Urzyczyn ’02; Salvati & Walukiewicz ’12)
HOPDA ⇐⇒ so-called safe fragment of the simply typed λ-calculus with let rec

18/22

Safely λ-definable functions

Equivalence for formalisms generating infinite trees
Higher-order pushdown automata ⇐⇒ safe λ-calculus with let rec

• Engelfriet & Vogler’s “high level tree transducers” are directly inspired from
Damm’s work on higher-order grammars → implicit safety constraint

→ Claim: the following should follow mostly routinely from previous work
Safe λ-terms (w/o let rec [Blum & Ong 2009]) of type TreeΓ[A] → TreeΣ
compute the same functions as “high level TTs” / …

But some trees can only be generated by unsafe recursion schemes [Parys 2012]
−→ safety could also decrease the λ-definable functions on finite trees

19/22

Safely λ-definable functions

Equivalence for formalisms generating infinite trees
Higher-order pushdown automata ⇐⇒ safe λ-calculus with let rec

• Engelfriet & Vogler’s “high level tree transducers” are directly inspired from
Damm’s work on higher-order grammars → implicit safety constraint

→ Claim: the following should follow mostly routinely from previous work
Safe λ-terms (w/o let rec [Blum & Ong 2009]) of type TreeΓ[A] → TreeΣ
compute the same functions as “high level TTs” / …

But some trees can only be generated by unsafe recursion schemes [Parys 2012]
−→ safety could also decrease the λ-definable functions on finite trees

19/22

Safely λ-definable functions

Equivalence for formalisms generating infinite trees
Higher-order pushdown automata ⇐⇒ safe λ-calculus with let rec

• Engelfriet & Vogler’s “high level tree transducers” are directly inspired from
Damm’s work on higher-order grammars → implicit safety constraint

→ Claim: the following should follow mostly routinely from previous work
Safe λ-terms (w/o let rec [Blum & Ong 2009]) of type TreeΓ[A] → TreeΣ
compute the same functions as “high level TTs” / …

But some trees can only be generated by unsafe recursion schemes [Parys 2012]
−→ safety could also decrease the λ-definable functions on finite trees

19/22

Collapsible pushdown transducers

Theorem (Hague, Murawski, Ong & Serre 2008)
Collapsible PDA generate the same trees as simply typed λ-terms with let rec

Additional structure on pushdowns of … of pushdowns + collapse operation

The “obvious” theorem
The simply typed λ-definable functions (over Church encodings) are exactly
those computable by some “collapsible pushdown tree transducer” model.

• Engelfriet & Vogler’s proofs rely on inductive characterizations that are not
available anymore in this setting…

• Technical issue: “collapsible pushdown transducers” can loop forever,
the simply typed λ-calculus is terminating

20/22

Collapsible pushdown transducers

Theorem (Hague, Murawski, Ong & Serre 2008)
Collapsible PDA generate the same trees as simply typed λ-terms with let rec

Additional structure on pushdowns of … of pushdowns + collapse operation
The “obvious” theorem
The simply typed λ-definable functions (over Church encodings) are exactly
those computable by some “collapsible pushdown tree transducer” model.

• Engelfriet & Vogler’s proofs rely on inductive characterizations that are not
available anymore in this setting…

• Technical issue: “collapsible pushdown transducers” can loop forever,
the simply typed λ-calculus is terminating

20/22

Collapsible pushdown transducers

Theorem (Hague, Murawski, Ong & Serre 2008)
Collapsible PDA generate the same trees as simply typed λ-terms with let rec

Additional structure on pushdowns of … of pushdowns + collapse operation
The “obvious” theorem
The simply typed λ-definable functions (over Church encodings) are exactly
those computable by some “collapsible pushdown tree transducer” model.

• Engelfriet & Vogler’s proofs rely on inductive characterizations that are not
available anymore in this setting…

• Technical issue: “collapsible pushdown transducers” can loop forever,
the simply typed λ-calculus is terminating

20/22

Decomposing the “obvious” theorem: taking divergence into account

Let f : {finite trees} ⇀ {possibly infinite trees} be a partial function.

1. f is computed by a collapsible pushdown transducer
⇐⇒ f is defined by a simply typed λ-term with let rec

⇝ straightforward variant of existing proof [Salvati & Walukiewicz 2012]

2. Furthermore, in that case, there is a simply typed λ-term without let rec
defining a function that coincides with f on f−1({finite trees})

⇝ Plotkin, Recursion does not always help, 1982 – arXived in 2022
again a finite semantics argument! (domain theory)

21/22

Decomposing the “obvious” theorem: taking divergence into account

Let f : {finite trees} ⇀ {possibly infinite trees} be a partial function.

1. f is computed by a collapsible pushdown transducer
⇐⇒ f is defined by a simply typed λ-term with let rec

⇝ straightforward variant of existing proof [Salvati & Walukiewicz 2012]

2. Furthermore, in that case, there is a simply typed λ-term without let rec
defining a function that coincides with f on f−1({finite trees})

⇝ Plotkin, Recursion does not always help, 1982 – arXived in 2022
again a finite semantics argument! (domain theory)

21/22

Conclusion

Thanks for your attention!

• “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed λ-calculi

• Semantic evaluation technique → application of denotational semantics
+ connections with categorical approaches to automata

• Discovery of an interesting class of string-to-string functions
−→ how I left linear logic and became a transducer theorist ;-)

Not mentioned:

• Non-commutative λ-calculus and star-free languages [N. & Pradic, ICALP’20]
• Safe λ-calculus normalization is TOWER-complete, via star-free expressions
• Applications of the geometry of interaction (ongoing)

Take-home theorem [Hillebrand & Kanellakis 1996]
StrΣ[A] → Bool in simply typed λ-calculus = regular languages

Conclusion

Thanks for your attention!

• “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed λ-calculi

• Semantic evaluation technique → application of denotational semantics
+ connections with categorical approaches to automata

• Discovery of an interesting class of string-to-string functions
−→ how I left linear logic and became a transducer theorist ;-)

Not mentioned:

• Non-commutative λ-calculus and star-free languages [N. & Pradic, ICALP’20]
• Safe λ-calculus normalization is TOWER-complete, via star-free expressions
• Applications of the geometry of interaction (ongoing)

Take-home theorem [Hillebrand & Kanellakis 1996]
StrΣ[A] → Bool in simply typed λ-calculus = regular languages

Conclusion

Thanks for your attention!

• “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed λ-calculi

• Semantic evaluation technique → application of denotational semantics
+ connections with categorical approaches to automata

• Discovery of an interesting class of string-to-string functions
−→ how I left linear logic and became a transducer theorist ;-)

Not mentioned:

• Non-commutative λ-calculus and star-free languages [N. & Pradic, ICALP’20]
• Safe λ-calculus normalization is TOWER-complete, via star-free expressions
• Applications of the geometry of interaction (ongoing)

Take-home theorem [Hillebrand & Kanellakis 1996]
StrΣ[A] → Bool in simply typed λ-calculus = regular languages

Conclusion

Thanks for your attention!

• “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed λ-calculi

• Semantic evaluation technique → application of denotational semantics
+ connections with categorical approaches to automata

• Discovery of an interesting class of string-to-string functions
−→ how I left linear logic and became a transducer theorist ;-)

Not mentioned:

• Non-commutative λ-calculus and star-free languages [N. & Pradic, ICALP’20]
• Safe λ-calculus normalization is TOWER-complete, via star-free expressions
• Applications of the geometry of interaction (ongoing)

Take-home theorem [Hillebrand & Kanellakis 1996]
StrΣ[A] → Bool in simply typed λ-calculus = regular languages

Conclusion

Thanks for your attention!

• “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed λ-calculi

• Semantic evaluation technique → application of denotational semantics
+ connections with categorical approaches to automata

• Discovery of an interesting class of string-to-string functions
−→ how I left linear logic and became a transducer theorist ;-)

Not mentioned:

• Non-commutative λ-calculus and star-free languages [N. & Pradic, ICALP’20]
• Safe λ-calculus normalization is TOWER-complete, via star-free expressions
• Applications of the geometry of interaction (ongoing)

Take-home theorem [Hillebrand & Kanellakis 1996]
StrΣ[A] → Bool in simply typed λ-calculus = regular languages

Conclusion Thanks for your attention!

• “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed λ-calculi

• Semantic evaluation technique → application of denotational semantics
+ connections with categorical approaches to automata

• Discovery of an interesting class of string-to-string functions
−→ how I left linear logic and became a transducer theorist ;-)

Not mentioned:

• Non-commutative λ-calculus and star-free languages [N. & Pradic, ICALP’20]
• Safe λ-calculus normalization is TOWER-complete, via star-free expressions
• Applications of the geometry of interaction (ongoing)

Take-home theorem [Hillebrand & Kanellakis 1996]
StrΣ[A] → Bool in simply typed λ-calculus = regular languages

