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Some motivations coming from the \-calculus

Let’s consider the simply typed A-calculus (I assume basic familiarity).

It’s a programming language, so it computes, right? And it’s not Turing-complete
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Some motivations coming from the \-calculus

Let’s consider the simply typed A-calculus (I assume basic familiarity).

It’s a programming language, so it computes, right? And it’s not Turing-complete
— typical “power” question: what does it compute?

Some results known for a long time, e.g.

Theorem (Schwichtenberg 1975)

The functions N* — N definable by simply-typed A-terms t : Nat — --- — Nat — Nat
are the extended polynomials (generated by 0, 1, +, X, id and ifzero).

where Nat is the type of Church numerals.
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Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (0 —0) -0 — 0

neN ~ n=MAM.f(... (fx)...): Nat with n times f

e forn € N, we have 7 : Nat

e converselyt:Nat = dneN.t =g, 7

Schwichtenberg 1975: Nat — - .- — Nat — Nat = extended polynomials
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Simply typed functions on Church numerals (1)

Recall that the type of Church numerals is Nat = (0 —0) -0 — 0

neN ~ wm=MA.f(... (fx)...): Nat with n times f
e forn € N, we have 7 : Nat therefore
n: Nat[A] = Nat[A/o] =(A—-A) - A— A
e converselyt:Nat = dneN.t =g, 7

Schwichtenberg 1975: Nat — - .- — Nat — Nat = extended polynomials

Choose some simple type A and some term f : Nat[A] — Nat.
What functions N — N can be defined this way?

For Nat[A] — Bool, there is a nice characterisation!
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Defining languages in the simply typed A-calculus

Church encodings of binary strings [ Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Stryy3 ):

011 = Mo. M- Ax. fo (f (1 x)) : Stryo4y = (0 = 0) = (0> 0) »0—0
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Defining languages in the simply typed A-calculus

Church encodings of binary strings [ Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Stryy3 ):

011 = Mo. M1 Ax. fo (A (f1 )):Str{ogl}:(o—>o)—>(o—>o)—>o—>o

Simply typed A-terms ¢ : Stro 11[A] — Bool define languages L C {0,1}*
Example: t = As. s id not true : Stryo 13[Bool] — Bool (even number of 1s)

t 011 — 5 011 id not true —4 id (not (not true)) —3 true

Theorem (Hillebrand & Kanellakis 1996)

All regular languages, and only those, can be defined this way.
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Regular languages in STLC and implicit complexity

Template for theorems at the structure/power interface

The languages/functions computed by programs of type T in the programming

language P are exactly those in the class C.
(dichotomy taken from Abramsky;, cf. e.g. the Structure meets Power workshop)

e Hillebrand & Kanellakis: P = simply typed A-calculus, C = regular languages
e Good news: unlike “extended polynomials”, a central object in
another field of computer science, namely automata theory
o The definition will be recalled soon
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Template for theorems at the structure/power interface

The languages/functions computed by programs of type T in the programming

language P are exactly those in the class C.
(dichotomy taken from Abramsky;, cf. e.g. the Structure meets Power workshop)

e Hillebrand & Kanellakis: P = simply typed A-calculus, C = regular languages
e Good news: unlike “extended polynomials”, a central object in
another field of computer science, namely automata theory
o The definition will be recalled soon
o Implicit computational complexity: C is a complexity class e.g. P, NP, ...
e ICC has been an active research field since the 1990s (cf. Péchoux’s HDR)
e Historical example (Girard): P = Light Linear Logic, C = P (polynomial time)

Our “implicit automata” research programme: C coming from automata theory
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Grandeur et misére de la complexité implicite

Implicit complexity has been very successful in capturing lots of different
complexity classes!
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Implicit complexity has been very successful in capturing lots of different

complexity classes! But the programming languages involved are often ad-hoc...
Several systems [...] have been produced; my favourite being LLL, light linear
logic, which [ ...] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules

which achieve certain effects, but are not justified by use, not even by some natural

“semantic” considerations. — Girard, From Foundations to Ludics
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Grandeur et misére de la complexité implicite

Implicit complexity has been very successful in capturing lots of different

complexity classes! But the programming languages involved are often ad-hoc...
Several systems [...] have been produced; my favourite being LLL, light linear
logic, which [ ...] can harbour all polytime functions. Unfortunately these systems
are good for nothing, they all come from bondage: artificial restrictions on the rules
which achieve certain effects, but are not justified by use, not even by some natural
“semantic” considerations. — Girard, From Foundations to Ludics

Yet we didn’t ask for regular languages to appear in the simply typed A-calculus!

“Implicit automata” challenge: find natural characterisations for other
automata-theoretic classes of languages/functions using typed A-calculi
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Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

o regular expressions: 0x (10x10%)* = “only Os and 1s & even number of 1s”

o finite automata (DFA/NFA): e.g. drawing below
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Regular languages

Many classical equivalent definitions (+ STLC with Church encodings!):

o regular expressions: 0% (10x10*)* = “only Os and 1s & even number of 1s”
o finite automata (DFA /NFA)
e algebraic definition below (very close to DFA), e.g. M = 7Z/(2)

Theorem (classical)

A language L C ¥* is regular <= there are a monoid morphism ¢ : ¥* — M toa
finite monoid M and a subset P C M such that L = ¢~ (P) = {w € X* | p(w) € P}.

Later in the talk: generalizations to functions ¥* — I'*
Before that: proof for languages in STLC
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Proof of STLC-definable — regular

Theorem (Hillebrand & Kanellakis, LICS’96)

For any type A and any simply typed X-term t : Stry;[A] — Bool,

the language L(t) = {w € £* | tw — true} is reqular.

Part 1 of proof.
Fix type A. Any denotational semantics [—] quotients words:

W € X~ W : Str[A] ~ [y a1 € [StrelAl]
[@]stry,a) determines behavior of w w.r.t. all Stry;[A] — Bool terms:

we L(t) <= tT —j true <= [t7] = []([T]) = [true]

assuming [true]#[false]

Goal: to decide L(t), compute w — [w] in some denotational model.
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For any type A and any simply typed X-term t : Stry;[A] — Bool,
the language L(t) = {w € £* | tw — true} is reqular.

Part 2 of proof.
We use [—] : STLC — FinSet to build a DFA with states Q = [Strx[A]]l,
acceptation as [t](—) = [true].  (|Q| < o0, e.g. 2> when A = Bool & |[o] | =2 = |3}|)

we L(t) < [[t]]([[wﬂstrg[/ﬂ> = [true] <= w accepted

— semantic evaluation argument (variant: morphism to monoid [Stry[A]]) 8/2



Usual transduction classes (functions [* — ¥*)

What is the right generalization of regular languages to transductions?
There are several canonical ones!

sequential fonctions C  rational functions C regular functions

= =

deterministic finite transducers "ondeterministic transducers

(“rational languages” = name for regular languages in the French tradition)
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Usual transduction classes (functions [* — ¥*)

What is the right generalization of regular languages to transductions?
There are several canonical ones!

sequential fonctions C  rational functions C regular functions

= =

deterministic finite transducers "ondeterministic transducers

(“rational languages” = name for regular languages in the French tradition)

o those classes are closed under composition

e preservation property: L regular = f !(L) regular

We shall be interested in reqular functions; many definitions,
such as streaming string transducers
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Streaming string transducers [Alur & Cerny 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

(alclalb #|b]c[#]c]al]
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Streaming string transducers [Alur & Cerny 2010] a.k.a. register transducers

Deterministic finite state automaton + string-valued registers. Example:

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

lalclalb[#[b|c|[#][c[a]
X =uac Y = baca#tcb# mapReverse(...) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

. X:=aX 2 X:i=e each register appears at most once
Y =Y Y = YX# on the right of a := in a transition
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Regular functions = computed by copyless streaming string transducers
Restrictions on “copying power”: old theme in automaton theory
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Here, we use the “\M®%-calculus” = Dual Intuitionistic Linear Logic
8

+ additive connectives @, &

(linear = exactly once; additives allow us to simulate at most once (affine))
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Linearity

Regular functions = computed by copyless streaming string transducers
Restrictions on “copying power”: old theme in automaton theory

A-calculus counterpart: linear types (Girard 1987)

Here, we use the “\M®%-calculus” = Dual Intuitionistic Linear Logic
8

+ additive connectives @, &

(linear = exactly once; additives allow us to simulate at most once (affine))

multiplicatives additives
AB:=0|A—-B|A®B|A&B|A®B|A—B
—— ——
linear functions non-linear functions
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First steps in implicit transducers

Linear Church encodings

Stri,py = (0 — 0) = (0 — 0) = (0 —o 0), mutatis mutandis for Strs,

Definition: a type of the M(®&-calculus is purely linear if it contains no “—"”
Delinition: a typ purely

Theorem (N. & Pradic; proof technique on next slides)

f:I* = ¥*isregular <= Ja purely linear type A and t : Strp[A] —o Stry,

in the M®~calculus such that Vw € T*, f(w) =5 t W
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Linear Church encodings

Stri,py = (0 — 0) = (0 — 0) = (0 —o 0), mutatis mutandis for Strs,

Definition: a type of the M(®&-calculus is purely linear if it contains no “—"”
Delinition: a typ purely

Theorem (N. & Pradic; proof technique on next slides)
f:I* = ¥*isregular <= Ja purely linear type A and t : Strp[A] —o Stry,

in the M®~calculus such that Vw € T*, f(w) =5 t W

e works also for regular tree-to-tree functions
e similar to “linear high-order tree transducers” [Gallot, Lemay & Salvati 2020]
— characterize reg. tree fn. w/o additives, but with “regular lookahead”

e Strp[A] — Stry, instead ~~ discovery [N., Nots & Pradic 2021] of
a natural subclass of the polyregular functions [ Bojaiiczyk 2018 ]
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Semantic evaluation and categorical automata theory

Again, go from typed A-terms to automata via denotational semantics

e naive semantics of the simply typed A-calculus in finite sets
— finite automata (Hillebrand & Kanellakis’s theorem)
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Again, go from typed A-terms to automata via denotational semantics

e naive semantics of the simply typed A-calculus in finite sets
— finite automata (Hillebrand & Kanellakis’s theorem)

Approach for our “implicit transducer” results

o Find a monoidal closed category C

(provides a semantics for the purely linear fragment of the A/®*-calculus)

e such that C-automata compute regular functions

(notion of automaton over a category used here: [Colcombet & Petrisan 2017])

e.g. C = Int(PFinSet) ~~ two-way automata [Hines 2003 ]
— connection with geometry of interaction, but does not handle additives
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Monoidal closed categories vs streaming string transducers

Copyless streaming string transducers ~ SR q-automata

e SR = category of copyless transitions between finite sets of registers

o (—)g = free finite coproduct completion ~ adds finite states
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Copyless streaming string transducers ~ SR q-automata

e SR = category of copyless transitions between finite sets of registers

o (—)g = free finite coproduct completion ~ adds finite states

o Issue: SRg is merely “partially” monoidal closed...

e However, (SRg )q is monoidal closed ((—)g = product completion)

((—)&)e completion ~ adding finite states with non-determinism

e copyless SSTs can be determinised [Alur & Deshmukh 2011]

e our work: categorical determinisation using the existence of some
“function spaces” A — B = “partial” monoidal closure!
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Monoidal closed structure on the category (SR )q

For A, B € Obj(SR): decompose morphisms

X :=abXcY X = 2Z1)(2Z2)/
~+  shape + labels Z; =ab, ...
Y :=ba Y :=Z73

copyless = finite number of possible shapes = A — B € Obj(SRg)
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~+  shape + labels Z; =ab, ...
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This decomposition is a classical technique, also used to show that comparison-free

polyregular functions are closed under composition in our ICALP’21 paper.
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Monoidal closed structure on the category (SR )q

In (C&)EB/ we have @u &x A”’x - @v &y Bv,y = &u @U &y @x Au,x - Bv,y

Theorem (“Dialectica-like” construction inspired by [Godel, de Paiva, Hofstra])

Let C a symmetric monoidal category. If the function space A —o B exists
in Cg for all A, B € Obj(C), then (Cg,)q is monoidal closed.

For A, B € Obj(SR): decompose morphisms
X :=abXcY X = Z1XZ2Y
~+  shape + labels Z; =ab, ...
Y :=ba Y :=Z73
copyless = finite number of possible shapes = A — B € Obj(SRg)

This decomposition is a classical technique, also used to show that comparison-free
polyregular functions are closed under composition in our ICALP’21 paper.
15/22



What happens without linearity?

Copyless streaming string transducers <= regular functions
<= alinear A-calculus (\®%).
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What happens without linearity?

Copyless streaming string transducers <= regular functions
<= alinear A-calculus (\®%).
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What happens without linearity?

Copyless streaming string transducers <= regular functions
<= alinear A-calculus (\®%).

Let’s drop linearity: copyful SSTs can be encoded in the simply typed A-calculus.

X:=X
e polynomial example: abc — (a)(ab)(abc) with a — !
Y =YX

e can grow up to exponentially, e.g. X := XX

— not closed under composition; by composing we get towers of exp,
matching the known growth rate for simply typed A-calculus

exp = M. n (mult 2) 1: Nat[Nat] — Nat

So, what is known about (compositions of) copyful SSTs?
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A robust class of hyperexponential transductions

Macro tree transducers (MTTs) generalize copyful SSTs to trees.

Theorem (Engelfriet & Vogler 1988)

Compositions of MTTs <= iterated pushdown transducers

using stacks of ... of stacks of input pointers
<= “High level tree transducers”
~ registers storing simply typed A-terms

Trivial observation

This is included in the simply typed A-definable tree functions.
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Macro tree transducers (MTTs) generalize copyful SSTs to trees.

Theorem (Engelfriet & Vogler 1988)

Compositions of MTTs <= iterated pushdown transducers

using stacks of ... of stacks of input pointers
<= “High level tree transducers”
~ registers storing simply typed A-terms

Trivial observation

This is included in the simply typed A-definable tree functions.

But we’ll see why the converse might fail, via a detour through infinite structures

(subtle restrictions on which A-terms may appear in registers)
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Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

(40, 1)
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Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

C //////////.a \\\\\\\\\\ a
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c
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Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input
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Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input
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Generating infinite trees
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Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input
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Generating infinite trees

Higher-order pushdown automata = iterated pushdown transducers without input

c/a\a
b/ \a
/ \

c

a b @

e N I
Church encoding: (0 -0 —0) = (0 - 0) -0 —0

b
|
b
c M. Ab. Xc. let rec f = Ax.ax (f(bx)) in fc

Theorem (Damm ’82; Knapkik, Niwinski & Urzyczyn '02; Salvati & Walukiewicz "12)

HOPDA <= so-called safe fragment of the simply typed \-calculus with 1let rec
18/22



Safely \-definable functions

Equivalence for formalisms generating infinite trees

Higher-order pushdown automata <= safe A-calculus with let rec

e Engelfriet & Vogler’s “high level tree transducers” are directly inspired from
Damm’s work on higher-order grammars — implicit safety constraint
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Safely \-definable functions

Equivalence for formalisms generating infinite trees

Higher-order pushdown automata <= safe A-calculus with let rec

e Engelfriet & Vogler’s “high level tree transducers” are directly inspired from
Damm’s work on higher-order grammars — implicit safety constraint

— Claim: the following should follow mostly routinely from previous work

Safe A-terms (w/o let rec [Blum & Ong 2009]) of type Treer[A] — Treey,
compute the same functions as “high level TTs” / ...

But some trees can only be generated by unsafe recursion schemes [Parys 2012]
— safety could also decrease the A\-definable functions on finite trees
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Collapsible pushdown transducers

Theorem (Hague, Murawski, Ong & Serre 2008)

Collapsible PDA generate the same trees as simply typed \-terms with let rec

Additional structure on pushdowns of ... of pushdowns + collapse operation
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Collapsible pushdown transducers

Theorem (Hague, Murawski, Ong & Serre 2008)

Collapsible PDA generate the same trees as simply typed \-terms with let rec

Additional structure on pushdowns of ... of pushdowns + collapse operation

The “obvious” theorem

The simply typed A-definable functions (over Church encodings) are exactly
those computable by some “collapsible pushdown tree transducer” model.

e Engelfriet & Vogler’s proofs rely on inductive characterizations that are not
available anymore in this setting...

e Technical issue: “collapsible pushdown transducers” can loop forever,
the simply typed A-calculus is terminating
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Decomposing the “obvious” theorem: taking divergence into account

Let f : {finite trees} — {possibly infinite trees} be a partial function.

1. fis computed by a collapsible pushdown transducer
<= f1is defined by a simply typed A-term with let rec
~» straightforward variant of existing proof [Salvati & Walukiewicz 2012]
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Decomposing the “obvious” theorem: taking divergence into account

Let f : {finite trees} — {possibly infinite trees} be a partial function.

1. fis computed by a collapsible pushdown transducer
<= f1is defined by a simply typed A-term with let rec
~» straightforward variant of existing proof [Salvati & Walukiewicz 2012]

2. Furthermore, in that case, there is a simply typed A-term without let rec
defining a function that coincides with f on f~!({finite trees})
~- Plotkin, Recursion does not always help, 1982 — arXived in 2022
again a finite semantics argument! (domain theory)

21/22



Conclusion

e “Implicit” characterisations of function classes defined by automata,
answering natural questions about (simply or linearly) typed A-calculi

e Semantic evaluation technique — application of denotational semantics
+ connections with categorical approaches to automata
e Discovery of an interesting class of string-to-string functions
— how I left linear logic and became a transducer theorist ;-)
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