
Implicit complexity and finite models
in the simply typed λ-calculus

Nguyễn Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito.eu
Laboratoire d’informatique de Paris Nord (LIPN), Université Paris 13
GT Scalp inaugural meeting, Orsay, November 27th, 2018

1/18

Implicit complexity with proofs-as-programs

Curry-Howard approach to implicit complexity:

1. Define logic / programming language
2. Bound evaluation complexity (soundness)
3. Show language expressivity (extensional completeness)
4. Result: expressible functions = some complexity class

Finding a logic (e.g. Girard’s Light Linear Logic) for a given
complexity class (e.g. P): usually non-trivial.

This talk: instead, ask (2)–(4) for the well-known simply typed
λ-calculus (STλ).
Old results from the 90’s which deserve to be better known.

If time permits: adaptation of these old methods to Elementary
Linear Logic (my own work, joint with Thomas Seiller).

2/18

Church integers in STλ

For all simple types A, Church integers can be typed as

n = λf.λx. f (. . . (f x)) : Nat[A] = (A → A) → (A → A)

Takemult = λn.λm.λf.n (m f) : Nat[A] → Nat[A] → Nat[A].
mult 2 : Nat[A] → Nat[A] can be iterated by a Nat[Nat[A]]…

−→ exp2 = λn.n (mult 2) 1 : Nat[Nat[A]] → Nat[A]

which cannot be iterated!

Smaller types, still heterogenous:

exp2 = λn.n 2 : Nat[A → A] → Nat[A]

Towers of exponentials of fixed height Nat[T[A]] → Nat[A],
but non-elementary functions seem out of reach from STλ.

3/18

Church integers in STλ

For all simple types A, Church integers can be typed as

n = λf.λx. f (. . . (f x)) : Nat[A] = (A → A) → (A → A)

Takemult = λn.λm.λf.n (m f) : Nat[A] → Nat[A] → Nat[A].
mult 2 : Nat[A] → Nat[A] can be iterated by a Nat[Nat[A]]…

−→ exp2 = λn.n (mult 2) 1 : Nat[Nat[A]] → Nat[A]

which cannot be iterated! Smaller types, still heterogenous:

exp2 = λn.n 2 : Nat[A → A] → Nat[A]

Towers of exponentials of fixed height Nat[T[A]] → Nat[A],
but non-elementary functions seem out of reach from STλ.

3/18

Church integers in STλ

For all simple types A, Church integers can be typed as

n = λf.λx. f (. . . (f x)) : Nat[A] = (A → A) → (A → A)

Takemult = λn.λm.λf.n (m f) : Nat[A] → Nat[A] → Nat[A].
mult 2 : Nat[A] → Nat[A] can be iterated by a Nat[Nat[A]]…

−→ exp2 = λn.n (mult 2) 1 : Nat[Nat[A]] → Nat[A]

which cannot be iterated! Smaller types, still heterogenous:

exp2 = λn.n 2 : Nat[A → A] → Nat[A]

Towers of exponentials of fixed height Nat[T[A]] → Nat[A],
but non-elementary functions seem out of reach from STλ.

3/18

The computational power of STλ (1)

Recall k-EXPTIME = DTIME(tower of exponentials of height k),
ELEMENTARY =

∪
k∈N

k-EXPTIME.

Let’s simulate an EXPTIME Turing machine in STλ.
Code its transition function as t : S → S (S type of states).
From n : Nat[S → S], obtain exp2 n : Nat[S].
Use this to iterate t 2n times, starting from coding of initial state.

Similarly, using n : Nat[T[S]] for big enough T, one can show
that β-reduction in STλ is k-EXPTIME-hard for all k.

4/18

The computational power of STλ (2)

β-reduction in STλ is k-EXPTIME-hard for all k.
From the time hierarchy theorem follows:

Theorem (Statman 1982)
β-equivalence of STλ terms is not in ELEMENTARY.

The proof we presented is due to Mairson (1992).1

So, STλ can somehow express all ELEMENTARY computations.
And this kind of encoding shouldn’t work beyond ELEMENTARY.

→ implicit complexity characterization of ELEMENTARY by STλ?

1“A simple proof of a theorem of Statman”, Theoretical Computer Science, 1992.

5/18

The computational power of STλ (2)

β-reduction in STλ is k-EXPTIME-hard for all k.
From the time hierarchy theorem follows:

Theorem (Statman 1982)
β-equivalence of STλ terms is not in ELEMENTARY.

The proof we presented is due to Mairson (1992).1

So, STλ can somehow express all ELEMENTARY computations.
And this kind of encoding shouldn’t work beyond ELEMENTARY.

→ implicit complexity characterization of ELEMENTARY by STλ?

1“A simple proof of a theorem of Statman”, Theoretical Computer Science, 1992.

5/18

STλ predicates on Church-encoded strings (1)

Let L be any ELEMENTARY language. We would like a STλ term
tL with the right type deciding L. That is,

∀w ∈ {0, 1}∗, tLw →∗
β true ⇐⇒ w ∈ L

Need to define encoding of inputs w.
Natural solution: use Church encoding of bitstrings
Str[A] = (A → A) → (A → A) → (A → A).

However this naive attempt fails spectacularly.
Theorem (Hillebrand & Kanellakis, LICS’96)
The languages decided by STλ-terms of type Str[A] → Bool are
exactly the regular languages.

(Note: A can be chosen depending on which regular language we
want to decide.)

6/18

STλ predicates on Church-encoded strings (1)

Let L be any ELEMENTARY language. We would like a STλ term
tL with the right type deciding L. That is,

∀w ∈ {0, 1}∗, tLw →∗
β true ⇐⇒ w ∈ L

Need to define encoding of inputs w.
Natural solution: use Church encoding of bitstrings
Str[A] = (A → A) → (A → A) → (A → A).

However this naive attempt fails spectacularly.
Theorem (Hillebrand & Kanellakis, LICS’96)
The languages decided by STλ-terms of type Str[A] → Bool are
exactly the regular languages.

(Note: A can be chosen depending on which regular language we
want to decide.) 6/18

STλ predicates on Church-encoded strings (2)

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any STλ-term t : Str[A] → Bool, the language
L(t) = {w ∈ {0, 1}∗ | t w →∗

β true} is regular.

Idea: use a finite semantics, e.g. J−K : STλ → FinSet; one can
build a finite automaton with states JStr[A]K recognizing L(t).

−→ semantic evaluation technique,
often useful for studying complexity in STλ
(Terui: “better semantics, faster computation”)

−→ correspondence Church encoding / finite automata,
extended to automata over infinite trees through finite
semantics for λY (i.e. STλ + fixpoints):
semantic approach to higher-order model checking
(Aehlig, Salvati–Walukiewicz, Grellois–Melliès…)

7/18

STλ predicates on Church-encoded strings (2)

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any STλ-term t : Str[A] → Bool, the language
L(t) = {w ∈ {0, 1}∗ | t w →∗

β true} is regular.

Idea: use a finite semantics, e.g. J−K : STλ → FinSet; one can
build a finite automaton with states JStr[A]K recognizing L(t).

−→ semantic evaluation technique,
often useful for studying complexity in STλ
(Terui: “better semantics, faster computation”)

−→ correspondence Church encoding / finite automata,
extended to automata over infinite trees through finite
semantics for λY (i.e. STλ + fixpoints):
semantic approach to higher-order model checking
(Aehlig, Salvati–Walukiewicz, Grellois–Melliès…)

7/18

STλ predicates on Church-encoded strings (2)

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any STλ-term t : Str[A] → Bool, the language
L(t) = {w ∈ {0, 1}∗ | t w →∗

β true} is regular.

Idea: use a finite semantics, e.g. J−K : STλ → FinSet; one can
build a finite automaton with states JStr[A]K recognizing L(t).

−→ semantic evaluation technique,
often useful for studying complexity in STλ
(Terui: “better semantics, faster computation”)

−→ correspondence Church encoding / finite automata,
extended to automata over infinite trees through finite
semantics for λY (i.e. STλ + fixpoints):
semantic approach to higher-order model checking
(Aehlig, Salvati–Walukiewicz, Grellois–Melliès…) 7/18

Towards extensional completeness

To express all ELEMENTARY predicates in STλ we need an
alternative input representation.

Such an alternative is studied in Hillebrand’s PhD thesis,
Finite Model Theory in the Simply Typed Lambda Calculus (1994),
supervised by Kanellakis.

Finite model theory ̸= finite semantics of programs!
It refers to finite first-order structures, as used

• in descriptive complexity,
• in the theory of relational databases

(Kanellakis came from the database community).

8/18

A bit of descriptive complexity

Data represented as (totally ordered) finite structures over a
first-order signature made of relation symbols.

Example
Signature for binary strings: ⟨≤,S⟩.
Finite models are (D,≤D,SD), |D| < ∞. SD(d) = “dth bit is 1”.

Descriptive complexity: characterize a complexity class C as set of
queries written in some logic LC , i.e. “is this LC formula true in
this finite model?”. For instance:
Theorem (Fagin 1974)
Queries in existential second-order logic = NP.

9/18

Finite models in STλ and extensional completeness (1)

Goal: represent finite models for signature ⟨R1, . . . ,Rp⟩ in STλ.

Idea: if Ri is ki-ary, list of ki-tuples,

Relk[d,A] = (dk → A → A) → A → A

(in the spirit of database theory: relation = set of records)
Now, what is is type d?

→ A free type variable in the type of the program.
Query terms t : Relk1 [d,A1] → . . . → Bool, with meta-level ∀d.
Morally equivalent to t : (∃d. Relk1 × . . .) → Bool.

We also need to give an equality predicate (Eq : d → d → Bool),
and a list of domain elements (List[d,A] = Rel1[d,A]).
Define query terms as terms of type

Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool

10/18

Finite models in STλ and extensional completeness (1)

Goal: represent finite models for signature ⟨R1, . . . ,Rp⟩ in STλ.

Idea: if Ri is ki-ary, list of ki-tuples,

Relk[d,A] = (dk → A → A) → A → A

(in the spirit of database theory: relation = set of records)
Now, what is is type d?

→ A free type variable in the type of the program.
Query terms t : Relk1 [d,A1] → . . . → Bool, with meta-level ∀d.
Morally equivalent to t : (∃d. Relk1 × . . .) → Bool.

We also need to give an equality predicate (Eq : d → d → Bool),
and a list of domain elements (List[d,A] = Rel1[d,A]).
Define query terms as terms of type

Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool

10/18

Finite models in STλ and extensional completeness (1)

Goal: represent finite models for signature ⟨R1, . . . ,Rp⟩ in STλ.

Idea: if Ri is ki-ary, list of ki-tuples,

Relk[d,A] = (dk → A → A) → A → A

(in the spirit of database theory: relation = set of records)
Now, what is is type d?

→ A free type variable in the type of the program.
Query terms t : Relk1 [d,A1] → . . . → Bool, with meta-level ∀d.
Morally equivalent to t : (∃d. Relk1 × . . .) → Bool.

We also need to give an equality predicate (Eq : d → d → Bool),
and a list of domain elements (List[d,A] = Rel1[d,A]).
Define query terms as terms of type

Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool
10/18

Finite models in STλ and extensional completeness (2)

To feed input to

t : Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool

instantiate d = on → o (n = domain size).

The semantics of the input now has size depending on n
−→ breaks finite automaton argument.

Which is enough to get all the expressivity we want!
Theorem (Hillebrand, Kanellakis & Mairson, LICS’93)
Query terms in STλ compute exactly ELEMENTARY queries over
finite models.

Proof.
ompleteness: encode Turing machines (as before).
Soundness: next slide.

11/18

Finite models in STλ and extensional completeness (2)

To feed input to

t : Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool

instantiate d = on → o (n = domain size).

The semantics of the input now has size depending on n
−→ breaks finite automaton argument.

Which is enough to get all the expressivity we want!
Theorem (Hillebrand, Kanellakis & Mairson, LICS’93)
Query terms in STλ compute exactly ELEMENTARY queries over
finite models.

Proof.
ompleteness: encode Turing machines (as before).
Soundness: next slide.

11/18

Functionality order and complexity (1)

Parameter controlling complexity: functionality order

ord(α → β) = max(ord(α) + 1, ord(β))

Proposition
∀k ∈ N ∃f(k) ∈ N s.t. normalization of λ-terms with order ≤ k
subterms is in f(k)-EXPTIME.

−→ Soundness: each query term represents a
f(max order in subterm)-EXPTIME query.

Suggests looking at fixed order terms to characterize k-EXPTIME
classes for some k.

12/18

Functionality order and complexity (1)

Parameter controlling complexity: functionality order

ord(α → β) = max(ord(α) + 1, ord(β))

Proposition
∀k ∈ N ∃f(k) ∈ N s.t. normalization of λ-terms with order ≤ k
subterms is in f(k)-EXPTIME.

−→ Soundness: each query term represents a
f(max order in subterm)-EXPTIME query.

Suggests looking at fixed order terms to characterize k-EXPTIME
classes for some k.

12/18

Functionality order and complexity (2)

Theorem (Hillebrand & Kanellakis)
The STλ query terms

t : Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool

with ord(Ai) ≤ 2k+ 1 (resp. 2k+ 2) compute exactly the
k-EXPTIME (resp. k-EXPSPACE) queries.

• order 1 is P
• order 2 is PSPACE
• order 3 is EXPTIME
• order 4 is EXPSPACE

And so on. Unsatisfying point: ord(d) is counted as 0, while it
should morally be 1 since eventually d = on → o.

13/18

Functionality order and complexity (3)

Theorem (Hillebrand & Kanellakis)
The STλ query terms

t : Relk1 [d,A1] → . . . → List[d,A] → (d → d → Bool) → Bool

with ord(Ai) ≤ 2k+ 1 (resp. 2k+ 2) compute exactly the
k-EXPTIME (resp. k-EXPSPACE) queries.

So exponential height is roughly half the order, and we have
time-space alternation. Same phenomenon:
Theorem (Terui, RTA’12)
Normalizing an STλ-term of type Bool w/ order ≤ r subterms is

• k-EXPTIME-complete for r = 2k+ 2 (P-complete for r = 2)
• k-EXPSPACE-complete for r = 2k+ 3 (PSPACE-c. for r = 3)

14/18

Functionality order and complexity (3)

Why half the order?
To simulate a k-EXPTIME TM, we use n : Nat[T[S]].

• S = type of TM configurations, adding an exponential to
the space used increments ord(S)

• adding an exponential to the number of iterations
increments ord(Nat[T[S]]) through the T part

Syntactic normalization takes around (order+O(1))-EXPTIME,
whereas would like (order/2+O(1))-EXPTIME.
Instead, both theorems are proven by a mix of β-reduction and
semantic evaluation.
(H&K: finite sets; Terui: Scott model of linear logic)

15/18

Functionality order and complexity (3)

Why half the order?
To simulate a k-EXPTIME TM, we use n : Nat[T[S]].

• S = type of TM configurations, adding an exponential to
the space used increments ord(S)

• adding an exponential to the number of iterations
increments ord(Nat[T[S]]) through the T part

Syntactic normalization takes around (order+O(1))-EXPTIME,
whereas would like (order/2+O(1))-EXPTIME.
Instead, both theorems are proven by a mix of β-reduction and
semantic evaluation.
(H&K: finite sets; Terui: Scott model of linear logic)

15/18

From STλ to Elementary Linear Logic (1)

To sum up:

• Church encodings of inputs restrict expressivity
• Semantic evaluation can prove this (and lots of other stuff)
• To overcome this, one can represent inputs as finite models

We will now see that these phenomena also occur in
Elementary Linear Logic.

16/18

From STλ to Elementary Linear Logic (2)

Using a suitable type Str of Church-encoded bitstrings:

Theorem (Baillot, APLAS’11)
The proofs of !Str⊸ !!Bool in 2nd order elementary affine logic
with recursive types decide exactly the languages in P.

Recursive types are crucial for the above, as we show:

Theorem
The proofs of !Str⊸ !!Bool in 2nd order ELL decide exactly the
regular languages.

Proof idea: again, semantic evaluation, in a finite semantics for
2nd order MALL (whose existence is a new result!).

17/18

From STλ to Elementary Linear Logic (3)

What do we get if we replace !Str by a encoding Inp of finite
relational structures?
Proposition
All logarithmic space queries can be computed by proofs of
Inp⊸ !!Bool.

Proved using descriptive complexity.

Conjecture
Proofs of Inp⊸ !!Bool decide exactly logarithmic space queries.

Currently working on this!

18/18

