
Proof nets through the lens of graph theory

Nguyễn Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito.eu
LIPN, Université Paris 13
Seminar of the “Gruppo di Logica e Geometria della Cognizione”
Università Roma Tre, May 17th, 2019

1/31

MLL proof nets

We work in Multiplicative Linear Logic (MLL)

A proof net is a sort of graph made of ax, O and ⊗ links which
represents a proof

• i.e. translated from a sequent calculus proof
• Equivalently, set of proof nets inductively generated

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥

ax ax

⊗

O
O

2/31

MLL proof nets

We work in Multiplicative Linear Logic (MLL)

A proof net is a sort of graph made of ax, O and ⊗ links which
represents a proof

• i.e. translated from a sequent calculus proof
• Equivalently, set of proof nets inductively generated

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥ O
⊢ A⊗ B,A⊥OB⊥

ax ax

⊗ O

O

2/31

MLL proof nets

We work in Multiplicative Linear Logic (MLL)

A proof net is a sort of graph made of ax, O and ⊗ links which
represents a proof

• i.e. translated from a sequent calculus proof
• Equivalently, set of proof nets inductively generated

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥ O
⊢ A⊗ B,A⊥OB⊥ O

⊢ (A⊗ B)O(A⊥OB⊥)

ax ax

⊗ O
O 2/31

Proof nets vs proof structures

Proof structures: graphs made of ax-links, ⊗-links and O-links

• Proof structures ⊋ proof nets!
Some are not images of any sequent calculus proof

Problem (Correctness)
Given a proof structure, decide whether it is a proof net.

Related to correctness criteria: non-inductive combinatorial
characterizations of proof nets among proof structures

3/31

A correctness criterion for MLL

Most common criterion: Danos–Regnier

• Delete 1 of the 2 premises of each O-link; do you always
get an (undirected) tree?

• If so, then you’ve got an MLL proof net

ax ax

⊗ O
O

4/31

A correctness criterion for MLL

Most common criterion: Danos–Regnier

• Delete 1 of the 2 premises of each O-link; do you always
get an (undirected) tree?

• If so, then you’ve got an MLL proof net

ax ax

⊗ O
O

4/31

A correctness criterion for MLL

Most common criterion: Danos–Regnier

• Delete 1 of the 2 premises of each O-link; do you always
get an (undirected) tree?

• If so, then you’ve got an MLL proof net

ax ax

⊗ O
O

4/31

A correctness criterion for MLL

Most common criterion: Danos–Regnier

• Delete 1 of the 2 premises of each O-link; do you always
get an (undirected) tree?

• If so, then you’ve got an MLL proof net

ax ax

⊗ O
O

4/31

A correctness criterion for MLL

Most common criterion: Danos–Regnier

• Delete 1 of the 2 premises of each O-link; do you always
get an (undirected) tree?

• If so, then you’ve got an MLL proof net

ax ax

⊗ O
O

4/31

A correctness criterion for MLL+Mix

Most common criterion: Danos–Regnier

• Delete 1 of the 2 premises of each O-link; do you always
get an (undirected) tree (resp. forest)?

• If so, then you’ve got an MLL (resp. MLL+Mix) proof net

Mix rule: ⊢ Γ ⊢ ∆

⊢ Γ,∆

4/31

Partial timeline of correctness criteria

• 1986: Birth of linear logic, “long trip” criterion
• 1989: Danos–Regnier criterion
• 1990: “contractibility” from Danos’s PhD gives a polynomial

time algorithm for correctness
• 1999: Guerrini implements contractibility in linear time

• complicated graph parsing algorithm, somewhat ad-hoc
• 2000: another linear time criterion by Murawski & Ong

• using mainstream graph theory (dominator trees)

• 2007: MLL correctness is NL-complete (Mogbil & Naurois)
• Lots of omissions in this list

• At first, complexity was not the main focus
• The subject seems “explored to death” …

5/31

The situation with Mix

• Danos–Regnier acyclicity
• Danos’s PhD contains a polynomial time criterion for

MLL+Mix (not contractibility)

• No linear-time algorithm
• No sub-polynomial algorithm
• No X-completeness result
• Maybe it’s straightforward to adapt the MLL case?

NO. It’s actually more subtle than expected at first sight.

• Actually, MLL+Mix case interesting because of close
connections with mainstream graph theory

• mainstream ̸= “homemade” objects such as paired graphs

6/31

The situation with Mix

• Danos–Regnier acyclicity
• Danos’s PhD contains a polynomial time criterion for

MLL+Mix (not contractibility)
• No linear-time algorithm
• No sub-polynomial algorithm
• No X-completeness result

• Maybe it’s straightforward to adapt the MLL case?

NO. It’s actually more subtle than expected at first sight.

• Actually, MLL+Mix case interesting because of close
connections with mainstream graph theory

• mainstream ̸= “homemade” objects such as paired graphs

6/31

The situation with Mix

• Danos–Regnier acyclicity
• Danos’s PhD contains a polynomial time criterion for

MLL+Mix (not contractibility)
• No linear-time algorithm
• No sub-polynomial algorithm
• No X-completeness result
• Maybe it’s straightforward to adapt the MLL case?

NO. It’s actually more subtle than expected at first sight.
• Actually, MLL+Mix case interesting because of close

connections with mainstream graph theory
• mainstream ̸= “homemade” objects such as paired graphs

6/31

The situation with Mix

• Danos–Regnier acyclicity
• Danos’s PhD contains a polynomial time criterion for

MLL+Mix (not contractibility)
• No linear-time algorithm
• No sub-polynomial algorithm
• No X-completeness result
• Maybe it’s straightforward to adapt the MLL case?

NO. It’s actually more subtle than expected at first sight.

• Actually, MLL+Mix case interesting because of close
connections with mainstream graph theory

• mainstream ̸= “homemade” objects such as paired graphs

6/31

The situation with Mix

• Danos–Regnier acyclicity
• Danos’s PhD contains a polynomial time criterion for

MLL+Mix (not contractibility)
• No linear-time algorithm
• No sub-polynomial algorithm
• No X-completeness result
• Maybe it’s straightforward to adapt the MLL case?

NO. It’s actually more subtle than expected at first sight.
• Actually, MLL+Mix case interesting because of close

connections with mainstream graph theory
• mainstream ̸= “homemade” objects such as paired graphs

6/31

A graph-theoretic viewpoint

Indeed, why don’t we juste use graph algorithms?

• Proof nets are graph-like structures
• Correctness criteria are decision procedures
• Would let us leverage the work of algorithmists

MLL+Mix correct = no cycle crossing both premises of a O-link

So this is a constrained path-finding problem

• Several such problems have been studied in graph theory
• Next: an example

7/31

A graph-theoretic viewpoint

Indeed, why don’t we juste use graph algorithms?

• Proof nets are graph-like structures
• Correctness criteria are decision procedures
• Would let us leverage the work of algorithmists

MLL+Mix correct = no cycle crossing both premises of a O-link

So this is a constrained path-finding problem

• Several such problems have been studied in graph theory
• Next: an example

7/31

Perfect matchings (1)

Definition
A perfect matching is a set of edges in a graph such that each
vertex is incident to exactly one edge in the matching.

A classical topic in combinatorics!

Example below: blue edges form a perfect matching

8/31

Perfect matchings (2)

An alternating path (resp. cycle) is a path (resp. cycle) which

• has no vertex repetitions
• alternates between edges inside and outside the matching

∃ alternating cycle ⇔ the perfect matching is not unique

9/31

Perfect matchings (2)

An alternating path (resp. cycle) is a path (resp. cycle) which

• has no vertex repetitions
• alternates between edges inside and outside the matching

∃ alternating cycle ⇔ the perfect matching is not unique

9/31

Proof net correctness vs perfect matching uniqueness

• Alternating cycles in perfect matchings are equivalent to
many1 kinds of constrained cycles in graph theory

• Is it also the case for MLL+Mix correctness?

• A connection was found by Christian Retoré in the 90’s
• R&B-graphs: reduction {proof structures} →

{graphs equipped with perfect matchings}

Theorem (Retoré’s correctness criterion)
A proof structure is a MLL+Mix proof net iff the perfect matching of
its R&B-graph is unique (i.e. has no alt. cycle).

1See e.g. Szeider, On theorems equivalent with Kotzig’s result on graphs
with unique 1-factors, 2004

10/31

Proof net correctness vs perfect matching uniqueness

• Alternating cycles in perfect matchings are equivalent to
many1 kinds of constrained cycles in graph theory

• Is it also the case for MLL+Mix correctness? YES
• A connection was found by Christian Retoré in the 90’s
• R&B-graphs: reduction {proof structures} →

{graphs equipped with perfect matchings}

Theorem (Retoré’s correctness criterion)
A proof structure is a MLL+Mix proof net iff the perfect matching of
its R&B-graph is unique (i.e. has no alt. cycle).

1See e.g. Szeider, On theorems equivalent with Kotzig’s result on graphs
with unique 1-factors, 2004

10/31

An immediate application: complexity of correctness

Linear time algorithms for MLL correctness (Guerrini /
Murawski & Ong) cannot be extended to MLL+Mix.

(Technical reason: take any subnet of a MLL net, contract it into a node, the
net is still correct; not true with Mix.)

Theorem (new!)
MLL+Mix correctness can be decided in linear time.

Proof.
Compute the R&B-graph, then test if it admits an alternating
cycle. Both are in linear time.

Also works for MLL (via “Euler–Poincaré” invariant)

Sophisticated linear time algorithm for finding an alt. cycle
−→ Leverage the work of graph theorists as a black box!

11/31

An immediate application: complexity of correctness

Linear time algorithms for MLL correctness (Guerrini /
Murawski & Ong) cannot be extended to MLL+Mix.

(Technical reason: take any subnet of a MLL net, contract it into a node, the
net is still correct; not true with Mix.)

Theorem (new!)
MLL+Mix correctness can be decided in linear time.

Proof.
Compute the R&B-graph, then test if it admits an alternating
cycle. Both are in linear time.

Also works for MLL (via “Euler–Poincaré” invariant)

Sophisticated linear time algorithm for finding an alt. cycle
−→ Leverage the work of graph theorists as a black box!

11/31

Timeline

• 1996: LL TokyoMeeting, Perfect matchings and series-parallel2
graphs: multiplicative proof nets as R&B-graphs (Retoré)

• May 1999: STOC’99, Unique maximum matching algorithms
(Gabow, Kaplan & Tarjan) −→ alt. cycles in linear time

• July 1999: LICS’99, Correctness of multiplicative proof nets is
linear (Guerrini)

OK, but Guerrini’s algorithm also computes a sequentialization
in linear time; can we do that for MLL+Mix?

Not quite, but we get close.
Before that, we need some preliminary work.

2Refers to cographs, also related to combinatorial proofs; not discussed here.

12/31

Timeline

• 1996: LL TokyoMeeting, Perfect matchings and series-parallel2
graphs: multiplicative proof nets as R&B-graphs (Retoré)

• May 1999: STOC’99, Unique maximum matching algorithms
(Gabow, Kaplan & Tarjan) −→ alt. cycles in linear time

• July 1999: LICS’99, Correctness of multiplicative proof nets is
linear (Guerrini)

OK, but Guerrini’s algorithm also computes a sequentialization
in linear time; can we do that for MLL+Mix?

Not quite, but we get close.
Before that, we need some preliminary work.

2Refers to cographs, also related to combinatorial proofs; not discussed here.

12/31

Timeline

• 1996: LL TokyoMeeting, Perfect matchings and series-parallel2
graphs: multiplicative proof nets as R&B-graphs (Retoré)

• May 1999: STOC’99, Unique maximum matching algorithms
(Gabow, Kaplan & Tarjan) −→ alt. cycles in linear time

• July 1999: LICS’99, Correctness of multiplicative proof nets is
linear (Guerrini)

OK, but Guerrini’s algorithm also computes a sequentialization
in linear time; can we do that for MLL+Mix?

Not quite, but we get close.
Before that, we need some preliminary work.
2Refers to cographs, also related to combinatorial proofs; not discussed here.

12/31

On sequentialization theorems

Sequentialization theorem: correct proof structures are proof nets,
i.e. come from sequent calculus proofs

A remark by Retoré: analogously, unique perfect matchings
admit an inductive characterization
(proof: use the theorem below)

Theorem (Kotzig 1959)
Every unique perfect matching (i.e. without alternating cycle)
contains a bridge.

• A mismatch: {sequentializations of a proof net} ̸∼=
{sequentializations of its “R&B-graph”}

• We fix this with another reduction
{proof structures} → {graphs w/ PMs}: graphification

13/31

On sequentialization theorems

Sequentialization theorem: correct proof structures are proof nets,
i.e. come from sequent calculus proofs

A remark by Retoré: analogously, unique perfect matchings
admit an inductive characterization
(proof: use the theorem below)

Theorem (Kotzig 1959)
Every unique perfect matching (i.e. without alternating cycle)
contains a bridge.

• A mismatch: {sequentializations of a proof net} ̸∼=
{sequentializations of its “R&B-graph”}

• We fix this with another reduction
{proof structures} → {graphs w/ PMs}: graphification

13/31

Graphification of proof structures (1)

• Matching edges correspond to links
• Bridges correspond to splitting terminal links

ax ax

⊗ O
O

ax ax

⊗ O

O

Correctness criterion is still uniqueness of PM i.e. no alt cycle

14/31

Graphification of proof structures (1)

• Matching edges correspond to links
• Bridges correspond to splitting terminal links

ax ax

⊗ O
O

ax ax

⊗ O

O

Correctness criterion is still uniqueness of PM i.e. no alt cycle

14/31

Graphification of proof structures (1)

• Matching edges correspond to links
• Bridges correspond to splitting terminal links

ax ax

⊗ O

O

ax ax

⊗ O

O
Correctness criterion is still uniqueness of PM i.e. no alt cycle

14/31

Graphification of proof structures (1)

• Matching edges correspond to links
• Bridges correspond to splitting terminal links

ax ax

⊗

O
O

ax ax

⊗

O

O
Correctness criterion is still uniqueness of PM i.e. no alt cycle

14/31

Graphification of proof structures (1)

• Matching edges correspond to links
• Bridges correspond to splitting terminal links

ax ax

⊗ O
O

ax ax

⊗ O

O
Correctness criterion is still uniqueness of PM i.e. no alt cycle

14/31

Graphification of proof structures (1)

• Matching edges correspond to links
• Bridges correspond to splitting terminal links

ax ax

⊗ O
O

ax ax

⊗ O

O
Correctness criterion is still uniqueness of PM i.e. no alt cycle

14/31

Graphifications of proof nets (2)

Theorem
The sequentializations of a proof structure are in bijection with the
sequentializations of its graphification.

In particular if one set is ̸= ∅ so is the other, therefore:
Corollary (Sequentialization theorem for MLL+Mix)
Danos–Regnier acyclic⇔MLL+Mix sequentializable.

New proof, immediate from graph-theoretic analogue.

Next, let’s compute a sequentialization.
Problem (Sequentialization)
Given a MLL+Mix proof net π, find a sequent proof which
translates into π.

15/31

Graphifications of proof nets (2)

Theorem
The sequentializations of a proof structure are in bijection with the
sequentializations of its graphification.

In particular if one set is ̸= ∅ so is the other, therefore:
Corollary (Sequentialization theorem for MLL+Mix)
Danos–Regnier acyclic⇔MLL+Mix sequentializable.

New proof, immediate from graph-theoretic analogue.

Next, let’s compute a sequentialization.
Problem (Sequentialization)
Given a MLL+Mix proof net π, find a sequent proof which
translates into π.

15/31

The naive sequentialization algorithm

1. Find a splitting link
2. Remove it
3. Recurse on remaining sub-proof net(s)

• Obvious implementation: quadratic time
• Linear-time traversal to find a splitting link at each step

• Efficient implementation: how to find bridges quickly?
• This has been studied by graph theorists

16/31

The naive sequentialization algorithm

1. Find a bridge in the graphification
2. Remove it
3. Recurse on remaining sub-proof net(s)

• Obvious implementation: quadratic time
• Linear-time traversal to find a bridge at each step

• Efficient implementation: how to find bridges quickly?
• This has been studied by graph theorists

16/31

The naive sequentialization algorithm

1. Find a bridge in the graphification
2. Remove it
3. Recurse on remaining sub-proof net(s)

• Obvious implementation: quadratic time
• Linear-time traversal to find a bridge at each step

• Efficient implementation: how to find bridges quickly?
• This has been studied by graph theorists

16/31

Quasi-linear sequentialization

Find bridges quickly using a dedicated data structure

• Fixed vertex set V, edge insertions/deletions, queries for
bridges and connected components

• Latest improvement: SODA 2018 paper3
O((log |V|)2(log log |V|)2) amortized complexity operations

Theorem
MLL+Mix proof nets can be sequentialized in
O(n(log n)2(log log n)2) time.

3Holm, Rotenberg & Thorup, Dynamic bridge-finding in Õ(log2 n)
amortized time

17/31

Quasi-linear sequentialization

Find bridges quickly using a dedicated data structure

• Fixed vertex set V, edge insertions/deletions, queries for
bridges and connected components

• Latest improvement: SODA 2018 paper3
O((log |V|)2(log log |V|)2) amortized complexity operations

Theorem
MLL+Mix proof nets can be sequentialized in
O(n(log n)2(log log n)2) time.

3Holm, Rotenberg & Thorup, Dynamic bridge-finding in Õ(log2 n)
amortized time

17/31

Mix makes things harder

Recap of new results on MLL+Mix (for now):

• correctness in linear time
• but sequentialization in quasi-linear time

Recall that MLL correctness is NL-complete.

So, is MLL+Mix in NL?

This would solve an open problem in graph theory
(thus, either difficult or false)

• Reduction from uniqueness of PMs (next slide)
• So the problems are actually equivalent

−→ Both MLL+Mix correctness and sequentialization seem
“harder” in some informal sense

18/31

Mix makes things harder

Recap of new results on MLL+Mix (for now):

• correctness in linear time
• but sequentialization in quasi-linear time

Recall that MLL correctness is NL-complete.

So, is MLL+Mix in NL?
This would solve an open problem in graph theory
(thus, either difficult or false)

• Reduction from uniqueness of PMs (next slide)
• So the problems are actually equivalent

−→ Both MLL+Mix correctness and sequentialization seem
“harder” in some informal sense

18/31

Reduction perfect matchings→ proof structures

w x

y z

e

f

g

a b

ax
e

ax
f

ax
g

O
x

O
y

⊗
a

⊗
b

w z

Next: a theorem on graphs inspired by linear logic

19/31

Reduction perfect matchings→ proof structures

w x

y z

e

f

g

a b

ax
e

ax
f

ax
g

O
x

O
y

⊗
a

⊗
b

w z

Next: a theorem on graphs inspired by linear logic 19/31

Blossoms in matching theory

• A key concept in combinatorial matching algorithms, e.g.
testing PM uniqueness: blossoms4

Definition
A blossom is a cycle with exactly 1 vertex matched outside.

4Edmonds, Paths, trees and flowers, Canadian J. Math., 1965 20/31

Blossoms vs. dependencies

Blossoms of graphification⇝ subformulae and dependencies

ax ax

⊗ O
O

ax ax

⊗ O

O

Definition
A O-link l depends upon a link l′ if there is a Danos–Regnier
path between the premises of l going through l′.

21/31

Blossoms vs. dependencies

Blossoms of graphification⇝ subformulae and dependencies

ax ax

⊗ O
O

ax ax

⊗ O

O

Definition
A O-link l depends upon a link l′ if there is a Danos–Regnier
path between the premises of l going through l′.

21/31

Blossoms vs. dependencies

Blossoms of graphification⇝ subformulae and dependencies

ax ax

⊗ O
O

ax ax

⊗ O

O

Definition
A O-link l depends upon a link l′ if there is a Danos–Regnier
path between the premises of l going through l′.

21/31

Blossoms vs. dependencies

Blossoms of graphification⇝ subformulae and dependencies

ax ax

⊗ O
O

ax ax

⊗ O

O

Definition
A O-link l depends upon a link l′ if there is a Danos–Regnier
path between the premises of l going through l′.

21/31

Blossoms vs. dependencies

Blossoms of graphification⇝ subformulae and dependencies

ax ax

⊗ O
O

ax ax

⊗ O

O
Definition
A O-link l depends upon a link l′ if there is a Danos–Regnier
path between the premises of l going through l′.

21/31

Blossoms vs. dependencies

Blossoms of graphification⇝ subformulae and dependencies

ax ax

⊗ O
O

ax ax

⊗ O

O
Definition
A O-link l depends upon a link l′ if there is a Danos–Regnier
path between the premises of l going through l′.

21/31

Kingdom ordering of proof nets and unique PMs

Definition (Kingdom ordering of a proof net)
Let l, l′ be links of a MLL+Mix proof net π. We define l ≪π l
iff every sequentialization of π introduces l above l′.

Theorem (Bellin 1997)
≪π= ((subformula relation) ∪ (dependency relation))∗

Kingdom ordering can be defined for unique PMs
(Natural concept, similar things studied in combinatorics
e.g. perfect elimination orderings of chordal graphs)

Theorem (Equivalent graph-theoretic version)
Kingdom ordering = “blossom reachability”

A non-artificial graph-theoretic result coming from LL;
simpler statement: transitive closure of only 1 relation!

22/31

Kingdom ordering of proof nets and unique PMs

Definition (Kingdom ordering of a proof net)
Let l, l′ be links of a MLL+Mix proof net π. We define l ≪π l
iff every sequentialization of π introduces l above l′.

Theorem (Bellin 1997)
≪π= ((subformula relation) ∪ (dependency relation))∗

Kingdom ordering can be defined for unique PMs
(Natural concept, similar things studied in combinatorics
e.g. perfect elimination orderings of chordal graphs)

Theorem (Equivalent graph-theoretic version)
Kingdom ordering = “blossom reachability”

A non-artificial graph-theoretic result coming from LL;
simpler statement: transitive closure of only 1 relation!

22/31

Summary of first part

Unique perfect matchings: the right graph-theoretic
counterpart for the statics of MLL+Mix proof nets
(Not a combinatorial bijection, but both algorithmic reductions and
transfer of structural properties)

Consequences:

• Progress on central problems on MLL+Mix nets
• Not mentioned: a quasi-NC correctness criterion

• New results in graph theory
• Not just Bellin’s theorem: also, connections with edge-colored

graphs and graphs with forbidden transitions, see
https://arxiv.org/abs/1901.07028

Next: graphs embedded on surfaces and cyclic linear logic
23/31

https://arxiv.org/abs/1901.07028

Cyclic MLL proof nets (1)

Sequent calculus for cyclic MLL: non-commutativity

replace exchange ⊢ Γ,A,B,∆
⊢ Γ,B,A∆ by ⊢ Γ,∆

⊢ ∆,Γ
cyclic exchange

Proof nets “drawn on the plane without crossings”:

in cyMLL:

ax

ax

⊗ O
O

not in cyMLL:
ax ax

⊗ O
O

24/31

Cyclic MLL proof nets (2)

Proof nets “drawn on the plane”,
but the notion of planar graph is insufficient:
both graphs on the previous slide are the same…

From Nagayama & Okada 20035:
Definition 3.2. A marked D–R graph drawing is said to be
uniformly directed if the L-edge, R-edge and C-edge for a link
is drawn in a fixed cyclic order uniformly for all tensor-
links and par-links, or the links of degree 3.

(emphasis mine)

5A graph-theoretic characterization theorem for multiplicative fragment of
non-commutative linear logic

25/31

Combinatorial maps

So we must consider graphs endowed with a rotation system:
for each vertex, a cyclic order on its incident edges.
(This order is different for our two examples.)

Undirected graph + rotation system = combinatorial map.

Theorem (Heffter–Edmonds–Ringel principle)
(Connected) combinatorial maps ∼= homeomorphism classes of
cellular6 embeddings of graphs on surfaces7.

Planar map = the surface is a sphere (compactified plane)
−→ cyMLL proof nets must be planar maps

6i.e. the faces are homeomorphic to disks.
7More precisely, compact oriented surfaces without boundary.

26/31

Combinatorial maps

So we must consider graphs endowed with a rotation system:
for each vertex, a cyclic order on its incident edges.
(This order is different for our two examples.)

Undirected graph + rotation system = combinatorial map.

Theorem (Heffter–Edmonds–Ringel principle)
(Connected) combinatorial maps ∼= homeomorphism classes of
cellular6 embeddings of graphs on surfaces7.

Planar map = the surface is a sphere (compactified plane)
−→ cyMLL proof nets must be planar maps
6i.e. the faces are homeomorphic to disks.
7More precisely, compact oriented surfaces without boundary.

26/31

A correctness criterion for cyMLL (1)

For cut-free proof structures,
MLL correctness + planarity = cyMLL correctness.

For proof nets with cuts, Melliès proposes a criterion based on
“ribbons”. My opinion: this is not the right point of view.

From embedded graph to ribbon:
take ε-neighborhood of graph drawing on the surface…
Conversely, one can recover the faces of a combinatorial map
from its ribbon.

27/31

A correctness criterion for cyMLL (2)

Theorem (Melliès’s criterion in mainstream language)
A proof structure with cuts is a cyMLL proof net iff

• it is a MLL proof net and a planar map,
• all its conclusions are on the same face, and this face contains no

upper corner of a O-link.

Corollary
Correctness for cyMLL with cuts is decidable in linear time.

Proof.
To decide planarity, compute the Euler characteristic of the
surface. This takes linear time on the combinatorial map.

Traveling around all faces also takes linear time.

28/31

A correctness criterion for cyMLL (2)

Theorem (Melliès’s criterion in mainstream language)
A proof structure with cuts is a cyMLL proof net iff

• it is a MLL proof net and a planar map,
• all its conclusions are on the same face, and this face contains no

upper corner of a O-link.

Corollary
Correctness for cyMLL with cuts is decidable in linear time.

Proof.
To decide planarity, compute the Euler characteristic of the
surface. This takes linear time on the combinatorial map.

Traveling around all faces also takes linear time.

28/31

Long trip switchings as embedded graphs (1)

Let’s apply combinatorial maps to usual (commutative) MLL.
Girard’s original long trip correctness criterion:

• On each ⊗-link and O-link, choose 1 of 2 possible set of
routing instructions around the link

• Is the orbit a single cycle?

29/31

Long trip switchings as embedded graphs (1)

Let’s apply combinatorial maps to usual (commutative) MLL.
Girard’s original long trip correctness criterion:

A long trip is a way to travel around a DR tree…
But how should we interpret the routing around a ⊗-link?

It’s a choice of rotation system! Trips are faces.

29/31

Long trip switchings as embedded graphs (1)

Let’s apply combinatorial maps to usual (commutative) MLL.
Girard’s original long trip correctness criterion:

A long trip is a way to travel around a DR tree…
But how should we interpret the routing around a ⊗-link?
It’s a choice of rotation system! Trips are faces.

29/31

Long trip switchings as embedded graphs (2)

By the Heffter–Edmonds–Ringel principle, that the equivalence
of the long trip and Danos–Regnier criteria is an instance of:

Theorem
A connected graph is a tree iff all its cellular embeddings on surfaces
have a single face.

(Thanks to T. Seiller and É. Colin de Verdière.)

Proof.

• (⇐) is easy combinatorially
• (⇒) is obvious topologically

(For a purely combinatorial proof of (⇒), ask T. Seiller.)

30/31

Conclusion of second part

Moral of the story: finding the right widespread mathematical
object makes a lot of things clearer!

Related:

• MLL with explicit exchange rule (Métayer 20018)
• Rephrasing of main result:

genus of surface ≤ number of exchange rules
• Gaubert 20049 rediscovers a basic fact on embedded graphs

• Bijective combinatorics of (linear / planar / usual) λ-terms
• e.g. N. Zeilberger’s recent work
• heavy use of combinatorial maps

8Implicit exchange in multiplicative proofnets.
9Two-dimensional proof-structures and the exchange rule.

31/31

