# Proof nets through the lens of graph theory

Nguyễn Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito.eu LIPN, Université Paris 13 Seminar of the "Gruppo di Logica e Geometria della Cognizione" Università Roma Tre, May 17th, 2019

# MLL proof nets

We work in Multiplicative Linear Logic (MLL)

A *proof net* is a sort of graph made of ax,  $\otimes$  and  $\otimes$  links which represents a proof

- i.e. translated from a sequent calculus proof
- Equivalently, set of proof nets inductively generated



# MLL proof nets

We work in Multiplicative Linear Logic (MLL)

A *proof net* is a sort of graph made of ax,  $\otimes$  and  $\otimes$  links which represents a proof

- i.e. translated from a sequent calculus proof
- Equivalently, set of proof nets inductively generated





# MLL proof nets

We work in Multiplicative Linear Logic (MLL)

A *proof net* is a sort of graph made of ax,  $\otimes$  and  $\otimes$  links which represents a proof

- i.e. translated from a sequent calculus proof
- Equivalently, set of proof nets inductively generated





*Proof structures*: graphs made of ax-links,  $\otimes$ -links and  $\otimes$ -links

Proof structures ⊋ proof nets!
 Some are not images of any sequent calculus proof

#### Problem (Correctness)

Given a proof structure, decide whether it is a proof net.

Related to *correctness criteria*: non-inductive combinatorial characterizations of proof nets among proof structures

- Delete 1 of the 2 premises of each  $\otimes$ -link; do you always get an (undirected) *tree*?
- If so, then you've got an MLL proof net



- Delete 1 of the 2 premises of each  $\otimes$ -link; do you always get an (undirected) *tree*?
- If so, then you've got an MLL proof net



- Delete 1 of the 2 premises of each  $\otimes$ -link; do you always get an (undirected) *tree*?
- If so, then you've got an MLL proof net



- Delete 1 of the 2 premises of each  $\otimes$ -link; do you always get an (undirected) *tree*?
- If so, then you've got an MLL proof net



- Delete 1 of the 2 premises of each  $\otimes$ -link; do you always get an (undirected) *tree*?
- If so, then you've got an MLL proof net



- Delete 1 of the 2 premises of each  $\otimes$ -link; do you always get an (undirected) *tree* (resp. forest)?
- If so, then you've got an MLL (resp. MLL+Mix) proof net

Mix rule: 
$$\frac{\vdash \Gamma \vdash \Delta}{\vdash \Gamma, \Delta}$$

### Partial timeline of correctness criteria

- 1986: Birth of linear logic, "long trip" criterion
- 1989: Danos–Regnier criterion
- 1990: "contractibility" from Danos's PhD gives a *polynomial time* algorithm for correctness
- 1999: Guerrini implements contractibility in *linear time* 
  - complicated graph parsing algorithm, somewhat ad-hoc
- 2000: another linear time criterion by Murawski & Ong
  - using mainstream graph theory (dominator trees)
- 2007: MLL correctness is NL-complete (Mogbil & Naurois)
- Lots of omissions in this list
  - At first, complexity was not the main focus
  - The subject seems "explored to death" ...

- Danos–Regnier acyclicity
- Danos's PhD contains a *polynomial time* criterion for MLL+Mix (not contractibility)

- Danos–Regnier acyclicity
- Danos's PhD contains a *polynomial time* criterion for MLL+Mix (not contractibility)
- No linear-time algorithm
- No sub-polynomial algorithm
- No X-completeness result

- Danos–Regnier acyclicity
- Danos's PhD contains a *polynomial time* criterion for MLL+Mix (not contractibility)
- No linear-time algorithm
- No sub-polynomial algorithm
- No X-completeness result
- Maybe it's straightforward to adapt the MLL case?

- Danos–Regnier acyclicity
- Danos's PhD contains a *polynomial time* criterion for MLL+Mix (not contractibility)
- No linear-time algorithm
- No sub-polynomial algorithm
- No X-completeness result
- Maybe it's straightforward to adapt the MLL case?
  NO. It's actually more subtle than expected at first sight.

- Danos–Regnier acyclicity
- Danos's PhD contains a *polynomial time* criterion for MLL+Mix (not contractibility)
- No linear-time algorithm
- No sub-polynomial algorithm
- No X-completeness result
- Maybe it's straightforward to adapt the MLL case?
  NO. It's actually more subtle than expected at first sight.
- Actually, MLL+Mix case interesting because of close connections with mainstream graph theory
  - mainstream  $\neq$  "homemade" objects such as *paired graphs*

Indeed, why don't we juste use graph algorithms?

- Proof nets are graph-like structures
- Correctness criteria are decision procedures
- Would let us leverage the work of algorithmists

Indeed, why don't we juste use graph algorithms?

- Proof nets are graph-like structures
- Correctness criteria are decision procedures
- Would let us leverage the work of algorithmists

MLL+Mix correct = no cycle crossing both premises of a ⊗-link So this is a *constrained path-finding* problem

- Several such problems have been studied in graph theory
- Next: an example

# Perfect matchings (1)

#### Definition

A *perfect matching* is a set of edges in a graph such that each vertex is incident to exactly one edge in the matching.

A classical topic in combinatorics!

Example below: blue edges form a perfect matching



# Perfect matchings (2)

An alternating path (resp. cycle) is a path (resp. cycle) which

- has no vertex repetitions
- alternates between edges inside and outside the matching

 $\exists$  alternating cycle  $\Leftrightarrow$  the perfect matching is not *unique* 



# Perfect matchings (2)

An alternating path (resp. cycle) is a path (resp. cycle) which

- has no vertex repetitions
- alternates between edges inside and outside the matching

 $\exists$  alternating cycle  $\Leftrightarrow$  the perfect matching is not *unique* 



### Proof net correctness vs perfect matching uniqueness

- Alternating cycles in perfect matchings are equivalent to many<sup>1</sup> kinds of constrained cycles in graph theory
- Is it also the case for MLL+Mix correctness?

<sup>&</sup>lt;sup>1</sup>See e.g. Szeider, On theorems equivalent with Kotzig's result on graphs with unique 1-factors, 2004

### Proof net correctness vs perfect matching uniqueness

- Alternating cycles in perfect matchings are equivalent to many<sup>1</sup> kinds of constrained cycles in graph theory
- Is it also the case for MLL+Mix correctness? YES
- A connection was found by Christian Retoré in the 90's
- *R&B-graphs*: reduction {proof structures} → {graphs equipped with perfect matchings}

#### Theorem (Retoré's correctness criterion)

*A proof structure is a MLL+Mix proof net iff the perfect matching of its R&B-graph is unique (i.e. has no alt. cycle).* 

<sup>&</sup>lt;sup>1</sup>See e.g. Szeider, On theorems equivalent with Kotzig's result on graphs with unique 1-factors, 2004

### An immediate application: complexity of correctness

Linear time algorithms for MLL correctness (Guerrini / Murawski & Ong) *cannot* be extended to MLL+Mix.

(Technical reason: take any subnet of a MLL net, contract it into a node, the net is still correct; not true with Mix.)

# An immediate application: complexity of correctness

Linear time algorithms for MLL correctness (Guerrini / Murawski & Ong) *cannot* be extended to MLL+Mix.

(Technical reason: take any subnet of a MLL net, contract it into a node, the net is still correct; not true with Mix.)

```
Theorem (new!)
```

MLL+Mix correctness can be decided in linear time.

#### Proof.

Compute the R&B-graph, then test if it admits an alternating cycle. Both are in linear time.

Also works for MLL (via "Euler–Poincaré" invariant)

Sophisticated linear time algorithm for finding an alt. cycle  $\longrightarrow$  Leverage the work of graph theorists as a black box!

### Timeline

- 1996: LL Tokyo Meeting, Perfect matchings and series-parallel<sup>2</sup> graphs: multiplicative proof nets as R&B-graphs (Retoré)
- May 1999: STOC'99, *Unique maximum matching algorithms* (Gabow, Kaplan & Tarjan) → alt. cycles in linear time
- July 1999: LICS'99, Correctness of multiplicative proof nets is *linear* (Guerrini)

<sup>&</sup>lt;sup>2</sup>Refers to cographs, also related to combinatorial proofs; not discussed here.

### Timeline

- 1996: LL Tokyo Meeting, Perfect matchings and series-parallel<sup>2</sup> graphs: multiplicative proof nets as R&B-graphs (Retoré)
- May 1999: STOC'99, *Unique maximum matching algorithms* (Gabow, Kaplan & Tarjan) → alt. cycles in linear time
- July 1999: LICS'99, Correctness of multiplicative proof nets is *linear* (Guerrini)

OK, but Guerrini's algorithm also computes a *sequentialization* in linear time; can we do that for MLL+Mix?

<sup>&</sup>lt;sup>2</sup>Refers to cographs, also related to combinatorial proofs; not discussed here.

### Timeline

- 1996: LL Tokyo Meeting, Perfect matchings and series-parallel<sup>2</sup> graphs: multiplicative proof nets as R&B-graphs (Retoré)
- May 1999: STOC'99, *Unique maximum matching algorithms* (Gabow, Kaplan & Tarjan) → alt. cycles in linear time
- July 1999: LICS'99, Correctness of multiplicative proof nets is *linear* (Guerrini)

OK, but Guerrini's algorithm also computes a *sequentialization* in linear time; can we do that for MLL+Mix?

Not quite, but we get close. Before that, we need some preliminary work.

<sup>&</sup>lt;sup>2</sup>Refers to cographs, also related to combinatorial proofs; not discussed here.

*Sequentialization theorem*: correct proof structures are proof nets, i.e. come from sequent calculus proofs

A remark by Retoré: analogously, unique perfect matchings admit an inductive characterization

(proof: use the theorem below)

#### Theorem (Kotzig 1959)

*Every unique perfect matching (i.e. without alternating cycle) contains a* bridge.

*Sequentialization theorem*: correct proof structures are proof nets, i.e. come from sequent calculus proofs

A remark by Retoré: analogously, unique perfect matchings admit an inductive characterization

(proof: use the theorem below)

#### Theorem (Kotzig 1959)

*Every unique perfect matching (i.e. without alternating cycle) contains a* bridge.

- A mismatch: {sequentializations of a proof net} ≇ {sequentializations of its "R&B-graph"}
- We fix this with another reduction
   {proof structures} → {graphs w/ PMs}: graphification

- Matching edges correspond to links
- Bridges correspond to splitting terminal links



- Matching edges correspond to links
- Bridges correspond to splitting terminal links



- Matching edges correspond to links
- Bridges correspond to splitting terminal links



- Matching edges correspond to links
- Bridges correspond to splitting terminal links



- Matching edges correspond to links
- Bridges correspond to splitting terminal links


# **Graphification of proof structures (1)**

- Matching edges correspond to links
- Bridges correspond to splitting terminal links



Correctness criterion is still uniqueness of PM i.e. no alt cycle

# **Graphifications of proof nets (2)**

#### Theorem

*The sequentializations of a proof structure are in bijection with the sequentializations of its graphification.* 

In particular if one set is  $\neq \emptyset$  so is the other, therefore:

**Corollary (Sequentialization theorem for MLL+Mix)** Danos-Regnier acyclic  $\Leftrightarrow$  MLL+Mix sequentializable.

New proof, immediate from graph-theoretic analogue.

# **Graphifications of proof nets (2)**

#### Theorem

*The sequentializations of a proof structure are in bijection with the sequentializations of its graphification.* 

In particular if one set is  $\neq \emptyset$  so is the other, therefore:

**Corollary (Sequentialization theorem for MLL+Mix)** Danos-Regnier acyclic  $\Leftrightarrow$  MLL+Mix sequentializable.

New proof, immediate from graph-theoretic analogue.

Next, let's *compute* a sequentialization.

Problem (Sequentialization)

*Given a* MLL+Mix proof net  $\pi$ , find a sequent proof which translates into  $\pi$ .

- 1. Find a splitting link
- 2. Remove it
- 3. Recurse on remaining sub-proof net(s)
- Obvious implementation: quadratic time
  - Linear-time traversal to find a splitting link at each step

- 1. Find a bridge in the graphification
- 2. Remove it
- 3. Recurse on remaining sub-proof net(s)
- Obvious implementation: quadratic time
  - Linear-time traversal to find a bridge at each step

- 1. Find a bridge in the graphification
- 2. Remove it
- 3. Recurse on remaining sub-proof net(s)
- Obvious implementation: quadratic time
  - Linear-time traversal to find a bridge at each step
- Efficient implementation: how to find bridges quickly?
  - This has been studied by graph theorists

Find bridges quickly using a dedicated data structure

- Fixed vertex set *V*, edge insertions/deletions, queries for bridges and connected components
- Latest improvement: SODA 2018 paper<sup>3</sup>
  O((log |V|)<sup>2</sup>(log log |V|)<sup>2</sup>) amortized complexity operations

<sup>&</sup>lt;sup>3</sup>Holm, Rotenberg & Thorup, Dynamic bridge-finding in  $\tilde{O}(\log^2 n)$  amortized time

Find bridges quickly using a dedicated data structure

- Fixed vertex set *V*, edge insertions/deletions, queries for bridges and connected components
- Latest improvement: SODA 2018 paper<sup>3</sup>
  O((log |V|)<sup>2</sup>(log log |V|)<sup>2</sup>) amortized complexity operations

#### Theorem

MLL+Mix proof nets can be sequentialized in  $O(n(\log n)^2(\log \log n)^2)$  time.

<sup>3</sup>Holm, Rotenberg & Thorup, Dynamic bridge-finding in  $\tilde{O}(\log^2 n)$  amortized time

### Mix makes things harder

Recap of new results on MLL+Mix (for now):

- correctness in linear time
- but sequentialization in *quasi*-linear time

Recall that MLL correctness is NL-complete.

So, is MLL+Mix in NL?

Recap of new results on MLL+Mix (for now):

- correctness in linear time
- but sequentialization in *quasi*-linear time

Recall that MLL correctness is NL-complete.

So, is MLL+Mix in NL?

This would solve an open problem in graph theory (thus, either difficult or false)

- Reduction from uniqueness of PMs (next slide)
- So the problems are actually *equivalent*

 $\longrightarrow$  Both MLL+Mix correctness and sequentialization seem "harder" in some informal sense

# Reduction perfect matchings $\rightarrow$ proof structures





### Reduction perfect matchings $\rightarrow$ proof structures





Next: a theorem on graphs inspired by linear logic

## Blossoms in matching theory

• A key concept in combinatorial matching algorithms, e.g. testing PM uniqueness: *blossoms*<sup>4</sup>

#### Definition

A *blossom* is a cycle with exactly 1 vertex matched outside.



<sup>4</sup>Edmonds, *Paths, trees and flowers,* Canadian J. Math., 1965

















Blossoms of graphification ~> subformulae and dependencies



#### Definition

A  $\otimes$ -link *l* depends upon a link *l*' if there is a Danos–Regnier path between the premises of *l* going through *l*'.

Blossoms of graphification ~> subformulae and dependencies



#### Definition

A  $\otimes$ -link *l* depends upon a link *l*' if there is a Danos–Regnier path between the premises of *l* going through *l*'.

# Kingdom ordering of proof nets and unique PMs

### Definition (Kingdom ordering of a proof net)

Let l, l' be links of a MLL+Mix proof net  $\pi$ . We define  $l \ll_{\pi} l$  iff every sequentialization of  $\pi$  introduces l above l'.

### Theorem (Bellin 1997)

 $\ll_{\pi} = ((subformula \ relation) \cup (dependency \ relation))^*$ 

# Kingdom ordering of proof nets and unique PMs

### Definition (Kingdom ordering of a proof net)

Let l, l' be links of a MLL+Mix proof net  $\pi$ . We define  $l \ll_{\pi} l$  iff every sequentialization of  $\pi$  introduces l above l'.

### Theorem (Bellin 1997)

 $\ll_{\pi} = ((subformula \ relation) \cup (dependency \ relation))^*$ 

Kingdom ordering can be defined for unique PMs (Natural concept, similar things studied in combinatorics

e.g. perfect elimination orderings of chordal graphs)

**Theorem (Equivalent graph-theoretic version)** *Kingdom ordering = "blossom reachability"* 

A non-artificial graph-theoretic result coming from LL; simpler statement: transitive closure of only 1 relation! Unique perfect matchings: the right graph-theoretic counterpart for the statics of MLL+Mix proof nets (Not a combinatorial bijection, but both algorithmic reductions and transfer of structural properties)

Consequences:

- Progress on central problems on MLL+Mix nets
  - Not mentioned: a *quasi-NC* correctness criterion
- New results in graph theory
  - Not just Bellin's theorem: also, connections with *edge-colored graphs* and *graphs with forbidden transitions*, see https://arxiv.org/abs/1901.07028

Next: graphs *embedded on surfaces* and *cyclic* linear logic

# Cyclic MLL proof nets (1)

Sequent calculus for cyclic MLL: non-commutativity

replace exchange 
$$\frac{\vdash \Gamma, A, B, \Delta}{\vdash \Gamma, B, A\Delta}$$
 by  $\frac{\vdash \Gamma, \Delta}{\vdash \Delta, \Gamma}$  cyclic exchange

Proof nets "drawn on the plane without crossings":





Proof nets "drawn on the plane", but the notion of *planar graph* is insufficient: both graphs on the previous slide are the same...

From Nagayama & Okada 2003<sup>5</sup>:

Definition 3.2. A marked D–R graph drawing is said to be uniformly directed if the L-edge, R-edge and C-edge for a link is drawn in a fixed cyclic order uniformly for all tensorlinks and par-links, or the links of degree 3.

(emphasis mine)

<sup>&</sup>lt;sup>5</sup>*A* graph-theoretic characterization theorem for multiplicative fragment of non-commutative linear logic

So we must consider graphs endowed with a *rotation system*: for each vertex, a cyclic order on its incident edges. (This order is different for our two examples.)

Undirected graph + rotation system = *combinatorial map*.

<sup>&</sup>lt;sup>6</sup>i.e. the faces are homeomorphic to disks.

<sup>&</sup>lt;sup>7</sup>More precisely, compact oriented surfaces without boundary.

So we must consider graphs endowed with a *rotation system*: for each vertex, a cyclic order on its incident edges. (This order is different for our two examples.)

Undirected graph + rotation system = *combinatorial map*.

### Theorem (Heffter-Edmonds-Ringel principle)

(Connected) combinatorial maps  $\cong$  homeomorphism classes of cellular<sup>6</sup> embeddings of graphs on surfaces<sup>7</sup>.

*Planar* map = the surface is a sphere (compactified plane)  $\rightarrow$  cyMLL proof nets must be planar maps

<sup>&</sup>lt;sup>6</sup>i.e. the faces are homeomorphic to disks.

<sup>&</sup>lt;sup>7</sup>More precisely, compact oriented surfaces without boundary.

For *cut-free* proof structures,

MLL correctness + planarity = cyMLL correctness.

For proof nets with cuts, Melliès proposes a criterion based on "ribbons". My opinion: this is not the right point of view.

From embedded graph to ribbon:

take  $\varepsilon$ -neighborhood of graph drawing on the surface... Conversely, one can recover the *faces* of a combinatorial map from its ribbon.

## A correctness criterion for cyMLL (2)

Theorem (Melliès's criterion in mainstream language)

A proof structure with cuts is a cyMLL proof net iff

- *it is a MLL proof net and a planar map,*
- *all its conclusions are on the same face, and this face contains no upper corner of a* ≈*-link.*

# A correctness criterion for cyMLL (2)

### Theorem (Melliès's criterion in mainstream language)

A proof structure with cuts is a cyMLL proof net iff

- *it is a MLL proof net and a planar map,*
- *all its conclusions are on the same face, and this face contains no upper corner of a* ≈*-link.*

### Corollary

Correctness for cyMLL with cuts is decidable in linear time.

### Proof.

To decide planarity, compute the Euler characteristic of the surface. This takes linear time on the combinatorial map.

Traveling around all faces also takes linear time.

# Long trip switchings as embedded graphs (1)

Let's apply combinatorial maps to usual (commutative) MLL. Girard's original *long trip* correctness criterion:

- On each ⊗-link and ⊗-link, choose 1 of 2 possible set of routing instructions around the link
- Is the orbit a single cycle?



# Long trip switchings as embedded graphs (1)

Let's apply combinatorial maps to usual (commutative) MLL. Girard's original *long trip* correctness criterion:



A long trip is a way to travel around a DR tree... But how should we interpret the routing around a  $\otimes$ -link?

# Long trip switchings as embedded graphs (1)

Let's apply combinatorial maps to usual (commutative) MLL. Girard's original *long trip* correctness criterion:



A long trip is a way to travel around a DR tree... But how should we interpret the routing around a  $\otimes$ -link? It's a choice of *rotation system*! Trips are *faces*.

# Long trip switchings as embedded graphs (2)

By the Heffter–Edmonds–Ringel principle, that the equivalence of the long trip and Danos–Regnier criteria is an instance of:

#### Theorem

A connected graph is a tree iff all its cellular embeddings on surfaces have a single face.

(Thanks to T. Seiller and É. Colin de Verdière.)

### Proof.

- $(\Leftarrow)$  is easy combinatorially
- $(\Rightarrow)$  is obvious topologically

(For a purely combinatorial proof of  $(\Rightarrow)$ , ask T. Seiller.)

Moral of the story: finding the right widespread mathematical object makes a lot of things clearer!

Related:

- MLL with explicit exchange rule (Métayer 2001<sup>8</sup>)
  - Rephrasing of main result: genus of surface ≤ number of exchange rules
  - Gaubert 2004<sup>9</sup> rediscovers a basic fact on embedded graphs
- Bijective combinatorics of (linear / planar / usual)  $\lambda$ -terms
  - e.g. N. Zeilberger's recent work
  - heavy use of combinatorial maps

<sup>&</sup>lt;sup>8</sup>*Implicit exchange in multiplicative proofnets.* 

<sup>&</sup>lt;sup>9</sup>*Two-dimensional proof-structures and the exchange rule.*